0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(\text{Buoyant Force (} F_b\text{)} = \rho_{\text{fluid}} \cdot V_{\text{submerged}} \cdot g\) | Analyze option (A): the buoyant force. The buoyant force is given by Archimedes’ principle, which states that the buoyant force is equal to the weight of the fluid displaced by the submerged part of the object. |
2 | \(V_{\text{submerged,1}} = 0.8V\), \(V_{\text{submerged,2}} = 0.2V\) | The volume submerged for block 1 is \(80\%\) of its volume \(V\), and for block 2 it is \(20\%\) of its volume \(V\). |
3 | For Block 1: \(F_{b,1} = \rho_{\text{fluid}} \cdot 0.8V \cdot g\) | Substitute \(V_{\text{submerged,1}}\) into the buoyant force equation for block 1. |
4 | For Block 2: \(F_{b,2} = \rho_{\text{fluid}} \cdot 0.2V \cdot g\) | Substitute \(V_{\text{submerged,2}}\) into the buoyant force equation for block 2. |
5 | \(F_{b,1} \neq F_{b,2}\) | The buoyant forces on the two blocks are different since \(0.8V \neq 0.2V\). |
6 | \(\text{Density of a block using buoyancy: } \rho_{\text{block}} = \rho_{\text{fluid}} \times \text{fraction submerged}\) | Analyze option (b): the density. Density is related to the fraction of the object submerged as the object’s weight is balanced by the buoyant force. |
7 | \(\rho_{\text{block,1}} = \rho_{\text{fluid}} \times 0.8\), \(\rho_{\text{block,2}} = \rho_{\text{fluid}} \times 0.2\) | Calculating the densities \( \rho_{\text{block,1}} \) and \( \rho_{\text{block,2}} \) of blocks 1 and 2 using the fraction of the volume submerged. |
8 | \(\rho_{\text{block,1}} \neq \rho_{\text{block,2}}\) | From the expressions above, densities of the blocks are different. |
Conclusion | Answer: (b) Only the volume of the blocks is the same. | The two blocks have the same volume, but different buoyant forces, densities, and the pressure at the bottom depends on depth submerged, which is different. |
Just ask: "Help me solve this problem."
How large must a heating duct be if air moving \( 3 \ \frac{\text{m}}{\text{s}} \) along it can replenish the air in a room of \( 300 \ \text{m}^3 \) volume every \( 15 \) minutes? Assume the air’s density remains constant.
A fluid flows through the two sections of cylindrical pipe shown in the figure. The narrow section of the pipe has radius \( R \) and the wide section has radius \( 2R \). What is the ratio of the fluid’s speed in the wide section of pipe to its speed in the narrow section of pipe, \( \frac{v_{\text{wide}}}{v_{\text{narrow}}} \)?
Water circulates throughout a house in a hot water heating system. If the water is pumped at a speed of \( 0.5 \) \( \frac{\text{m}}{\text{s}} \) through a \( 2 \) \( \text{cm} \) diameter pipe in the basement under a pressure of \( 3 \) \( \text{atm} \), what will be the flow speed and pressure in a \( 1.3 \) \( \text{cm} \) diameter pipe on the second floor \( 5 \) \( \text{m} \) above?
The difference in pressure between the atmosphere and the human lungs is \( 1.05 \times 10^5 \) \( \text{Pa} \). What is the longest straw you could use to draw up milk whose density is \( 1030 \) \( \text{kg/m}^3 \)?
Nancy is using a turkey baster (a kitchen tool with a rubber bulb on one end and a tube on the other) to collect juices from a roasting turkey. When she squeezes and then releases the rubber bulb, it creates suction with a pressure of \( 99{,}800 \) \( \text{Pa} \). This suction causes the turkey juice to rise \( 9 \) \( \text{cm} \) up the tube. Based on this information, what is the density of the turkey juice?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.