0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[A_1v_1 = A_2v_2\] | Apply the principle of continuity, which states that for an incompressible fluid, the mass flow rate must be constant. This implies that the product of the cross-sectional area and the velocity is constant along the flow path. |
2 | \[\frac{v_2}{v_1} = \frac{A_1}{A_2} = \left(\frac{d_1}{d_2}\right)^2 = 100\] | Given that the diameter of the hose is \(10\) times that of the nozzle, the area ratio \(\left(\frac{A_1}{A_2}\right)\) is \(10^2 = 100\). Therefore, \(v_2 = 100 \times v_1\). |
3 | \[v_2 = 100 \times 0.4 \, \text{m/s} = 40 \, \text{m/s}\] | Substitute \(v_1 = 0.4 \, \text{m/s}\) into the equation to find \(v_2\). This is the velocity of water at the nozzle. |
4 | \[P_1 + \frac{1}{2}\rho v_1^2 + \rho gy_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho gy_2\] | Apply Bernoulli’s Equation considering points at the pump (Point 1) and at the nozzle (Point 2). Pressure, kinetic energy per unit volume, and potential energy per unit volume are balanced between the two points. |
5 | \[P_1 + \frac{1}{2}\rho (0.4)^2 + 0 = P_{\text{atm}} + \frac{1}{2}\rho (40)^2 + \rho g(1)\] | Substitute known values: \(v_1 = 0.4 \, \text{m/s}\), \(y_1 = 0\), \(y_2 = 1\), and \(v_2 = 40 \, \text{m/s}\). At Point 2, pressure equals atmospheric pressure \(P_{\text{atm}}\). |
6 | \[P_1 = P_{\text{atm}} + \rho g + \frac{1}{2}\rho (40)^2 – \frac{1}{2}\rho (0.4)^2\] | Reorganize the equation to express the pressure at the pump, \(P_1\), in terms of atmospheric pressure and other known quantities. |
7 | \[P_1 – P_{\text{atm}} = \rho g + \frac{1}{2}\rho ((40)^2 – (0.4)^2)\] | Calculate the pressure difference between the pump and the atmosphere. |
8 | \[P_1 – P_{\text{atm}} = 1000 \times 9.8 + \frac{1}{2} \times 1000 ((40)^2 – (0.4)^2)\] | Use \(\rho = 1000 \, \text{kg/m}^3\) for the density of water and \(g = 9.8 \, \text{m/s}^2\) for gravitational acceleration. Calculate the individual energy terms in the equation. |
9 | \[P_1 – P_{\text{atm}} = 9800 + \left( \frac{1}{2} \right) 1000 \times (1600 – 0.16)\] | Substitute and simplify the calculation for kinetic and potential energies. |
10 | \[P_1 – P_{\text{atm}} = 9800 + 800000\] | Complete the calculations: \((1600 – 0.16) = 1599.84\). Therefore, \(\frac{1}{2} \times 1000 \times 1599.84 = 799920\) Pa. |
11 | \[P_1 – P_{\text{atm}} = 809800 \, \text{Pa}\] | Convert the final result to kilopascals \( \text{kPa} \) (1 \(\text{kPa} = 1000 \text{Pa} \)). Box the final answer. |
12 | \[ \boxed{810 \, \text{kPa}} \] | The result shows the pressure difference between the pump and the atmospheric pressure. The correct multiple-choice answer is \( (d) \, 810 \, \text{kPa} \). |
Just ask: "Help me solve this problem."
When the button of a trash compactor is pushed, a force of \( 350 \) \( \text{N} \) pushes down on a \( 1.3 \) \( \text{cm}^2 \) input piston, creating a force of \( 22,076 \) \( \text{N} \) to crush the trash. What is the area of the piston that crushes the trash?
The \( 70 \) \( \text{kg} \) student in the figure balances a \( 1200 \) \( \text{kg} \) elephant on a hydraulic lift. Assume that it is filled with oil, which is incompressible and has a density \( \rho = 900 \) \( \text{kg/m}^3 \). What is the diameter of the piston the student is standing on? Assume each piston has a cylindrical shape, i.e., a circular cross-sectional area. Note: The two pistons are at the same height. Also, the diameter of the wider piston is given in the figure to be \( 2.0 \) \( \text{m} \).
A horizontal tube with two vertical T-branches (A and B) is partially submerged in a liquid, with the open ends of the branches exposed to the air. However, the section of the tube above point B is hidden from view and may either be wider or narrower than the section above A.
Air is blown through the horizontal tube, causing the liquid levels in the vertical branches to rise as shown. Based on the observed water levels, which of the following best describes the characteristics of the hidden section of the tube above B?
Why do you float higher in salt water than in fresh water?
In the lab, a student is given a glass beaker filled with water with an ice cube of mass \( m \) and volume \( V_c \) floating in it.
The downward force of gravity on the ice cube has magnitude \( F_g \). The student pushes down on the ice cube with a force of magnitude \( F_P \) so that the cube is totally submerged. The water then exerts an upward buoyant force on the ice cube of magnitude \( F_B \). Which of the following is an expression for the magnitude of the acceleration of the ice cube when it is released?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.