0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ F_\text{output} = mg \] | Calculate the force due to the mass of the rock. Here, \( m = 55.2 \, \text{kg} \) and \( g = 9.81 \, \text{m/s}^2 \). |
2 | \[ F_\text{output} = 55.2 \times 9.81 \] | Substitute values to find the force on the output plunger. |
3 | \[ F_\text{output} = 541.212 \, \text{N} \] | The force exerted by the rock on the output plunger. |
4 | \[ \frac{F_\text{input}}{A_\text{input}} = \frac{F_\text{output}}{A_\text{output}} \] | Use Pascal’s principle, which states that pressure is transmitted undiminished in an enclosed static fluid. |
5 | \[ F_\text{input} = \frac{F_\text{output} \times A_\text{input}}{A_\text{output}} \] | Rearrange to solve for the input force needed for equilibrium. |
6 | \[ F_\text{input} = \frac{541.212 \times 15}{65} \] | Substitute the area values: \( A_\text{input} = 15 \, \text{cm}^2 \) and \( A_\text{output} = 65 \, \text{cm}^2 \). |
7 | \[ F_\text{input} = 124.843 \, \text{N} \] | Calculate the force exerted on the input piston necessary for equilibrium. |
8 | \[ 124.843 = k_s \Delta x \] | Relate the input force to the spring constant \( k_s = 1250 \, \text{N/m} \) and the compression \( \Delta x \). |
9 | \[ \Delta x = \frac{124.843}{1250} \] | Solve for the compression of the spring. |
10 | \[ \Delta x = 0.0999 \, \text{m} \] | Convert the compression to meters. |
11 | \[ \boxed{9.99 \, \text{cm}} \] | Convert to centimeters and box the final answer. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ A_\text{input} \Delta y_\text{input} = A_\text{output} \Delta y_\text{output} \] | Use the principle of conservation of volume in the hydraulic system. |
2 | \[ 15 \times 22.0 = 65 \times \Delta y_\text{output} \] | Substitute \( \Delta y_\text{input} = 22.0 \, \text{cm} \) and the areas. |
3 | \[ 330 = 65 \times \Delta y_\text{output} \] | Calculate the product of the input area and the distance. |
4 | \[ \Delta y_\text{output} = \frac{330}{65} \] | Solve for the rise in the output plunger’s height. |
5 | \[ \Delta y_\text{output} = 5.077 \, \text{cm} \] | The final rise in the output plunger. |
6 | \[ \boxed{5.08 \, \text{cm}} \] | Box the final answer after rounding to two decimal places. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ P = P_0 + \rho g h \] | The absolute pressure at a depth \( h \) is given by this equation, where \( P_0 \) is atmospheric pressure. |
2 | \[ P = 101325 + 1000 \times 9.81 \times 0.85 \] | Substitute \( P_0 = 101325 \, \text{Pa} \), \( \rho = 1000 \, \text{kg/m}^3 \), \( g = 9.81 \, \text{m/s}^2 \), and the height \( h = 0.85 \, \text{m} \). |
3 | \[ P = 101325 + 8338.5 \] | Calculate the pressure contribution from the water column. |
4 | \[ P = 109663.5 \, \text{Pa} \] | Calculate the total absolute pressure at the bottom of the chamber. |
5 | \[ \boxed{109664 \, \text{Pa}} \] | Box the final answer after rounding to the nearest Pascal. |
Just ask: "Help me solve this problem."
Ben’s favorite ride at the Barrel-O-Fun Amusement Park is the Flying Umbrella, which is lifted by a hydraulic jack. The operator activates the ride by applying a force of \( 72 \) \( \text{N} \) to a \( 3.0 \) \( \text{cm} \) wide cylindrical piston, which holds the \( 20,000 \) \( \text{N} \) ride off the ground. What is the diameter of the piston that holds the ride?
A Venturi meter is a device used for measuring the speed of a fluid within a pipe. The drawing shows a gas flowing at a speed \( v_2 \) through a horizontal section of pipe with a cross-sectional area \( A_2 = 542 \) \( \text{cm}^2 \). The gas has a density of \( 1.35 \) \( \text{kg/m}^3 \). The Venturi meter has a cross-sectional area of \( A_1 = 215 \) \( \text{cm}^2 \) and has been substituted for a section of the larger pipe. The pressure difference between the two sections \( P_2 – P_1 = 145 \) \( \text{Pa} \).
A cube of unknown material and uniform density floats in a container of water with \(60\%\) of its volume submerged. If this same cube were placed in a container of oil with density \(800\) \(\text{kg/m}^3\), what portion of the cube’s volume would be submerged while floating?
Two objects labeled K and L have equal mass but densities \( 0.95D_o \) and \( D_o \), respectively. Each of these objects floats after being thrown into a deep swimming pool. Which is true about the buoyant forces acting on these objects?
Diamond has a density of \( 3500 \) \( \text{kg/m}^3 \). During a physics lab, a diamond drops out of Virginia’s necklace and falls into her graduated cylinder filled with \( 5.00 \times 10^{-5} \) \( \text{m}^3 \) of water. This causes the water level to rise to the \( 5.05 \times 10^{-5} \) \( \text{m}^3 \) mark. What is the mass of Virginia’s diamond?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) | Â |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
 | \(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.Â
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.Â
Submitting counts as 1 attempt.Â
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.Â
10 Free Credits To Get You StartedÂ
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.Â