AP Physics

Unit 8 - Fluids

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part A – Buoyant force

Step Derivation/Formula Reasoning
(a) 1 \(B = W_{\text{air}} – W_{\text{water}}\) The buoyant force \(B\) equals the difference between the weight of the object measured in air and the apparent weight when submerged.
(a) 2 \(B = 17.8\,N – 16.2\,N = 1.6\,N\) Substitute the given readings to calculate the buoyant force.
(a) 3 \(\boxed{B = 1.6\,N}\) This is the final buoyant force acting on the object in water.

Part B – Volume of the object

Step Derivation/Formula Reasoning
(b) 1 \(B = \rho_{w} g V\) According to Archimedes’ principle, the buoyant force is equal to the weight of the displaced water where \(\rho_{w}\) is the density of water, \(g\) is gravitational acceleration, and \(V\) is the volume displaced.
(b) 2 \(V = \frac{B}{\rho_{w} g}\) Rearrange the formula to solve for the volume of the object.
(b) 3 \(V = \frac{1.6}{1000 \times 9.8}\) Substitute \(B = 1.6\,N\), \(\rho_{w} = 1000\,kg/m^3\), and \(g = 9.8\,m/s^2\).
(b) 4 \(V \approx 1.63 \times 10^{-4}\,m^3\) Compute the division \(1.6/(9800)\) to obtain the object’s volume.
(b) 5 \(\boxed{V \approx 1.63 \times 10^{-4}\,m^3}\) This is the final volume of the object.

Part C – Density of the object

Step Derivation/Formula Reasoning
(c) 1 \(W = m g\) The weight of the object in air is the product of its mass \(m\) and gravitational acceleration \(g\).
(c) 2 \(m = \frac{W}{g} = \frac{17.8}{9.8}\) Solve for the mass by rearranging the weight formula using \(W = 17.8\,N\) and \(g = 9.8\,m/s^2\).
(c) 3 \(m \approx 1.82\,kg\) Performing the division gives the mass of the object.
(c) 4 \(\rho = \frac{m}{V}\) Density is defined as mass divided by volume.
(c) 5 \(\rho = \frac{1.82}{1.63 \times 10^{-4}}\) Substitute \(m \approx 1.82\,kg\) and \(V \approx 1.63 \times 10^{-4}\,m^3\) into the density formula.
(c) 6 \(\rho \approx 1.12 \times 10^4\,kg/m^3\) The division yields the density of the object.
(c) 7 \(\boxed{\rho \approx 1.12 \times 10^4\,kg/m^3}\) This is the final density of the object.

Part D – Absolute pressure when object is removed

Step Derivation/Formula Reasoning
(d) 1 \(p = p_{\text{atm}} + \rho_{w} g h\) The absolute pressure at the bottom of a water column is given by the sum of atmospheric pressure \(p_{\text{atm}}\) and the hydrostatic pressure \(\rho_{w} g h\), where \(h\) is the water depth.
(d) 2  Removing the object Upon removal of the object, the water can now fill the space the ball occupied. This reduces the overall water depth \(h\).
(d) 4 \(\boxed{p \text{ decreases}}\) Thus, the hydrostatic pressure (\(\rho gh\)) decreases, due to the decrease in height of the water. Since hydrostatic pressure drops so will the absolute pressure, as given by the equation in (d) 1

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(\boxed{1.6\,N}\)
  2. \(\boxed{1.63 \times 10^{-4}\,m^3}\)
  3. \(\boxed{1.12 \times 10^4\,kg/m^3}\)
  4. The absolute pressure at the bottom of the water \(\boxed{\text{decreases}}\) because the when the ball is removed the water height decreases, which decreases hydrostatic pressure, and thus also absolute pressure, as given by the equation \(p = p_{\text{atm}} + \rho_{w} g h\).

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.