AP Physics

Unit 8 - Fluids

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part A

Step Derivation/Formula Reasoning
1 \[ Q = \pi r^2 v \] This is the expression for the volume rate of flow, where \(r\) is the nozzle radius and \(v\) is the exit velocity.
2 \[ Q = \pi (0.015)^2 (6.0) \] Substitute the given values \(r = 0.015\,\text{m}\) and \(v = 6.0\,\text{m/s}\) into the equation.
3 \[ Q \approx \pi \times 0.000225 \times 6.0 \approx \pi \times 0.00135 \approx 0.00424\,\text{m}^3/\text{s} \] Perform the multiplication and use an approximation for \(\pi\) to calculate \(Q\).
4 \[ \boxed{Q \approx 0.00424\,\text{m}^3/\text{s}} \] This is the final numerical value for the volume rate of flow.

Part B

Step Derivation/Formula Reasoning
1 \[ A_{\text{pipe}} = \pi r_{\text{pipe}}^2 = \pi (0.025)^2 \] Calculate the cross-sectional area of the pipe having radius \(0.025\,\text{m}\).
2 \[ A_{\text{pipe}} \approx \pi \times 0.000625 \approx 0.00196\,\text{m}^2 \] Multiply to find the numerical area.
3 \[ v_{\text{pipe}} = \frac{Q}{A_{\text{pipe}}} = \frac{0.00424}{0.00196} \approx 2.16\,\text{m/s} \] Determine the velocity of water in the pipe using the constant flow rate \(Q\) from part (a).
4 \[ P_{\text{pipe}} = P_{\text{atm}} + \frac{1}{2}\rho\left(v_{\text{exit}}^2 – v_{\text{pipe}}^2\right) + \rho g (2.5) \] Apply Bernoulli’s equation between the fountain exit (where \(P_{\text{exit}} = P_{\text{atm}}\) and \(v_{\text{exit}} = 6.0\,\text{m/s}\)) at \(z=0\) and the pipe point, which is \(2.5\,\text{m}\) below.
5 \[ \frac{1}{2}\rho(v_{\text{exit}}^2 – v_{\text{pipe}}^2) = \frac{1}{2}(1000)(36 – 4.67) \approx 500 \times 31.33 \approx 15665\,\text{Pa} \] Compute the kinetic term using \(\rho = 1000\,\text{kg/m}^3\), \(v_{\text{exit}}^2 = 36\), and \(v_{\text{pipe}}^2 \approx 4.67\).
6 \[ \rho g (2.5) = 1000 \times 9.81 \times 2.5 \approx 24525\,\text{Pa} \] Calculate the gravitational pressure increase due to the \(2.5\,\text{m}\) height difference.
7 \[ P_{\text{pipe}} \approx 101325 + 15665 + 24525 \approx 141515\,\text{Pa} \] Sum up the atmospheric pressure with the kinetic and gravitational contributions.
8 \[ \boxed{P_{\text{pipe}} \approx 1.42 \times 10^5\,\text{Pa}} \] This is the final calculated absolute pressure in the pipe.

Part C

Step Derivation/Formula Reasoning
1 \[ v_{\text{new}} = \sqrt{2 g h} \] To reach a maximum height \(h\), the required exit speed is given by equating kinetic energy to gravitational potential energy.
2 \[ v_{\text{new}} = \sqrt{2 \times 9.81 \times 4.0} \approx \sqrt{78.48} \approx 8.86\,\text{m/s} \] Substitute \(g = 9.81\,\text{m/s}^2\) and \(h = 4.0\,\text{m}\) to compute the new exit velocity.
3 \[ A_{\text{new}} = \frac{Q}{v_{\text{new}}} = \frac{0.00424}{8.86} \approx 0.000478\,\text{m}^2 \] With the flow rate constant, the new nozzle area is determined by dividing \(Q\) by the new exit velocity.
4 \[ r_{\text{new}} = \sqrt{\frac{A_{\text{new}}}{\pi}} = \sqrt{\frac{0.000478}{\pi}} \approx 0.0123\,\text{m} \] Calculate the new nozzle radius from the area using the area formula of a circle.
5 \[ \boxed{r_{\text{new}} \approx 0.0123\,\text{m}} \] This is the required radius of the nozzle to launch the water to \(4.0\,\text{m}\) while maintaining the same flow rate.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(\boxed{Q \approx 0.00424\,\text{m}^3/\text{s}}\)
  2. \(\boxed{P_{\text{pipe}} \approx 1.42 \times 10^5\,\text{Pa}}\)
  3. \(\boxed{r_{\text{new}} \approx 0.0123\,\text{m}}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.