0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[L = I \omega_0\] | The angular momentum \(L\) is given by the product of the moment of inertia \(I\) and the angular velocity \(\omega_0\). |
2 | \[I = m(2l)^2 + 2m(l)^2\] | Calculate the moment of inertia \(I\). The moment of inertia for each disk is \(mr^2\), and the total is the sum of each disk’s moment of inertia about point \(P\). |
3 | \[I = 4ml^2 + 2ml^2 = 6ml^2\] | Simplify the expression for the total moment of inertia. |
4 | \[L = 6ml^2 \omega_0\] | Substitute the moment of inertia into the angular momentum formula to find the initial angular momentum. |
5 | \[\boxed{6ml^2 \omega_0}\] | Final expression for the initial angular momentum. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[f_1 = \mu mg\] | The frictional force on the disk with mass \(m\) is \(\mu mg\). |
2 | \[f_2 = \mu (2m)g = 2\mu mg\] | The frictional force on the disk with mass \(2m\) is \(2\mu mg\). |
3 | \[\tau = f_2 \cdot l + f_1 \cdot (2l)\] | Calculate the total torque \(\tau\) due to friction using the perpendicular distances \(l\) and \(2l\). |
4 | \[\tau = (2\mu mg) \cdot l + (\mu mg) \cdot 2l\] | Substitute the expressions for the frictional forces. |
5 | \[\tau = 2\mu mgl + 2\mu mgl = 4\mu mgl\] | Simplify to find the total frictional torque. |
6 | \[\boxed{4\mu mgl}\] | Final expression for the frictional torque. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[\tau = I \alpha\] | The torque \(\tau\) is equal to the moment of inertia \(I\) multiplied by the angular deceleration \(\alpha\). |
2 | \[4\mu mgl = 6ml^2 \alpha\] | Substitute the expressions for torque and moment of inertia. |
3 | \[\alpha = \frac{4\mu g}{6l} = \frac{2\mu g}{3l}\] | Solve for angular deceleration \(\alpha\). |
4 | \[\omega_0 = \alpha T\] | Set the initial angular velocity equal to the product of angular deceleration and time to come to rest. |
5 | \[T = \frac{\omega_0}{\alpha} = \frac{\omega_0 \cdot 3l}{2\mu g}\] | Solve for time \(T\). |
6 | \[\boxed{\frac{3l\omega_0}{2\mu g}}\] | Final expression for the time taken to come to rest. |
Just ask: "Help me solve this problem."
A windmill blade with a rotational inertia of \( 6.0 \) \( \text{kg} \cdot \text{m}^2 \) has an initial angular velocity of \( 8 \) \( \text{rad/s} \) in the clockwise direction. It is then given an angular acceleration of \( 4 \) \( \text{rad/s}^2 \) in the clockwise direction for \( 10 \) seconds. What is the change in rotational kinetic energy of the blade over this time interval?
A solid metal bar is at rest on a horizontal frictionless surface. It is free to rotate about a vertical axis at the left end. The figures below show forces of different magnitudes that are exerted on the bar at different locations. In which case does the bar’s angular speed about the axis increase at the fastest rate?
The elliptical orbit of a comet is shown above. Positions 1 and 2 are, respectively, the farthest and nearest positions to the Sun, and at position 1 the distance from the comet to the Sun is 10 times that at position 2. At position 2, the comet’s kinetic energy is
A wheel of radius R and negligible mass is mounted on a horizontal frictionless axle so that the wheel is in a vertical plane. Three small objects having masses [katex]m[/katex], [katex]M[/katex], and [katex]2M[/katex], respectively, are mounted on the rim of the wheel, as shown above. If the system is in static equilibrium, what is the value of [katex]m[/katex] in terms of [katex]M[/katex] ?
An object is moving in a horizontal circle at a constant speed. Which of the following correctly describes the linear and angular velocities of the object between any point along the circular path?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?