AP Physics

Unit 8 - Fluids

Intermediate

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part 1: Flow Velocity (Continuity)

Step Derivation/Formula Reasoning
1 \[ A_1 = \frac{\pi d_1^2}{4} \quad , \quad A_2 = \frac{\pi d_2^2}{4} \] Calculate the cross-sectional areas of the pipe at street level and top floor using the area formula for a circle. Here, \(d_1 = 0.05\,m\) and \(d_2 = 0.028\,m\).
2 \[ A_1 v_i = A_2 v_x \] Apply the continuity equation for incompressible flow which states that the volumetric flow rate must remain constant.
3 \[ v_x = \frac{A_1}{A_2} v_i = \left(\frac{d_1}{d_2}\right)^2 v_i \] Simplify the expression by canceling the common factor \(\frac{\pi}{4}\) in the area formulas, showing that the velocity scales as the square of the diameter ratio.
4 \[ v_x = \left(\frac{0.05}{0.028}\right)^2 (0.78) \approx 2.48\,m/s \] Substitute the given values: \(d_1 = 0.05\,m\), \(d_2 = 0.028\,m\), and \(v_i = 0.78\,m/s\). The ratio \(\left(\frac{0.05}{0.028}\right)^2 \) is approximately 3.188; multiplying by 0.78 yields \(v_x \approx 2.48\,m/s\).
5 \[ \boxed{v_x \approx 2.48\, m/s} \] This is the final computed flow velocity at the top floor of the building.

Part 2: Gauge Pressure (Bernoulli)

Step Derivation/Formula Reasoning
1 \[ \frac{P_1}{\rho} + \frac{v_i^2}{2} + g y_1 = \frac{P_2}{\rho} + \frac{v_x^2}{2} + g y_2 \] Write Bernoulli’s equation between the street level (point 1) and the top floor (point 2). Here, \(y_1 = 0\) and \(y_2 = 16\,m\).
2 \[ \frac{P_2}{\rho} = \frac{P_1}{\rho} + \frac{v_i^2 – v_x^2}{2} – g \Delta y \] Rearrange the equation to solve for \(P_2\), where \(\Delta y = y_2 – y_1 = 16\,m\).
3 \[ P_2 = P_1 + \rho \left(\frac{v_i^2 – v_x^2}{2} – g \Delta y \right) \] Multiply both sides by the density \(\rho\) to isolate \(P_2\).
4 \[ P_1 = 3.8\,atm = 3.8 \times 101325 \approx 385035\,Pa \] Convert the gauge pressure at street level from atmospheres to Pascals using \(1\,atm \approx 101325\,Pa\).
5 \[ \frac{v_i^2 – v_x^2}{2} = \frac{0.78^2 – 2.48^2}{2} \approx \frac{0.6084 – 6.1504}{2} \approx -2.77\, m^2/s^2 \] Calculate the difference in kinetic energy per unit mass between the two points.
6 \[ g \Delta y = 9.8 \times 16 \approx 156.8\, m^2/s^2 \] Compute the gravitational potential energy change per unit mass over a height of \(16\,m\).
7 \[ \rho \left( \frac{v_i^2 – v_x^2}{2} – g \Delta y \right) \approx 1000 \left(-2.77 – 156.8\right) \approx -159570\,Pa \] Combine the kinetic and potential terms multiplied by the density \(\rho = 1000\,kg/m^3\) to find the pressure change.
8 \[ P_2 \approx 385035 – 159570 \approx 225465\,Pa \] Subtract the pressure drop from the initial gauge pressure to get the gauge pressure at the top floor.
9 \[ \boxed{P_2 \approx 2.25 \times 10^5\,Pa} \] This is the final gauge pressure of the water in the pipe on the top floor.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \( v_x \approx 2.48 \, \text{m/s} \)
  2. \( P_2 \approx 2.25 \times 10^5 \, \text{Pa} \)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.