0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | $$ T_{1} – m_{1}g = m_{1}a $$ | This is Newton’s second law for mass \(m_{1}\) moving upward. |
| 2 | $$ m_{2}g – T_{2} = m_{2}a $$ | This is Newton’s second law for mass \(m_{2}\) moving downward. |
| 3 | $$ T_{1} = m_{1}g + m_{1}a \quad \text{and} \quad T_{2} = m_{2}g – m_{2}a $$ | Rearrange the equations to solve for the tensions in the string. |
| 4 | $$ (T_{2} – T_{1})R = I\left(\frac{a}{R}\right) $$ | This relates the net torque on the pulley to its moment of inertia \(I\) using the no‐slip condition \(\alpha = \frac{a}{R}\). |
| 5 | $$ T_{2} – T_{1} = \frac{I\,a}{R^{2}} $$ | Simplify the torque equation by dividing both sides by \(R\). |
| 6 | $$ (m_{2}g – m_{2}a) – (m_{1}g + m_{1}a) = $$$$(m_{2}-m_{1})g – (m_{2}+m_{1})a =$$$$\frac{I\,a}{R^{2}} $$ | Substitute the expressions for \(T_{1}\) and \(T_{2}\) into the torque equation. |
| 7 | $$ I = \frac{R^{2}}{a}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})a\Bigr] $$ | Rearrange the equation to solve for the moment of inertia \(I\). |
| 8 | $$ h = \frac{1}{2}at^{2} $$ | Use the kinematics relation for the heavy mass \(m_{2}\) falling a distance \(h\) from rest. |
| 9 | $$ a = \frac{2h}{t^{2}} $$ | Solve for the acceleration \(a\) from the kinematics equation. |
| 10 | $$ I = \frac{R^{2}}{\frac{2h}{t^{2}}}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})\frac{2h}{t^{2}}\Bigr] $$ | Substitute \(a = \frac{2h}{t^{2}}\) into the expression for \(I\). |
| 11 | $$ I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1}) $$ | Simplify the expression to obtain \(I\) solely in terms of \(m_{1}, m_{2}, R, h, t\) and \(g\). |
| 12 | $$ \boxed{I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1})} $$ | This is the final algebraic expression for the pulley’s moment of inertia. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | $$ \Delta x = R\theta $$ | This equation relates the linear displacement \(\Delta x\) to the angular displacement \(\theta\) of the pulley. |
| 2 | $$ h = R\theta $$ | Since the heavy mass \(m_{2}\) falls a distance \(h\), the length of the unwound rope is \(h\), which equals \(R\theta\). |
| 3 | $$ \theta = \frac{h}{R} $$ | Solve for the angular displacement \(\theta\) of the pulley. |
| 4 | $$ \boxed{\theta = \frac{h}{R}} $$ | This is the final expression for the total rotation of the pulley in radians. |
Just ask: "Help me solve this problem."

A rod is initially at rest on a rough horizontal surface. Three forces are exerted on the rod with the magnitudes and directions shown in the figure. The force exerted in the center of the rod is an equidistant 0.5 m from both ends of the rod. If friction between the rod and the table prevents the rod from rotating, what is the magnitude of the torque exerted on the rod about its center from frictional forces?
When the speed of a rear-drive car is increasing on a horizontal road, what is the direction of the frictional force on the tires?
Four systems are in rotational motion. Which of the following combinations of rotational inertia and angular speed for each of the systems corresponds to the greatest rotational kinetic energy?
| System | Rotational Inertia | Angular Speed |
|---|---|---|
| A | \( I_0 \) | \( \omega_0 \) |
| B | \( I_0 \) | \( 4\, \omega_0 \) |
| C | \( 2 I_0 \) | \( 2\, \omega_0 \) |
| D | \( 6 I_0 \) | \( \omega_0 \) |
A wheel 31 cm in diameter accelerates uniformly from 240rpm to 360rpm in 6.8 s. How far will a point on the edge of the wheel have traveled in this time?
The driver of a car traveling at \( 30.0 \) \( \text{m/s} \) applies the brakes and undergoes a constant negative acceleration of \( 2.00 \) \( \text{m/s}^2 \). How many revolutions does each tire make before the car comes to a stop, assuming that the car does not skid and that the tires have radii of \( 0.300 \) \( \text{m} \)?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?