0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | $$ T_{1} – m_{1}g = m_{1}a $$ | This is Newton’s second law for mass \(m_{1}\) moving upward. |
| 2 | $$ m_{2}g – T_{2} = m_{2}a $$ | This is Newton’s second law for mass \(m_{2}\) moving downward. |
| 3 | $$ T_{1} = m_{1}g + m_{1}a \quad \text{and} \quad T_{2} = m_{2}g – m_{2}a $$ | Rearrange the equations to solve for the tensions in the string. |
| 4 | $$ (T_{2} – T_{1})R = I\left(\frac{a}{R}\right) $$ | This relates the net torque on the pulley to its moment of inertia \(I\) using the no‐slip condition \(\alpha = \frac{a}{R}\). |
| 5 | $$ T_{2} – T_{1} = \frac{I\,a}{R^{2}} $$ | Simplify the torque equation by dividing both sides by \(R\). |
| 6 | $$ (m_{2}g – m_{2}a) – (m_{1}g + m_{1}a) = $$$$(m_{2}-m_{1})g – (m_{2}+m_{1})a =$$$$\frac{I\,a}{R^{2}} $$ | Substitute the expressions for \(T_{1}\) and \(T_{2}\) into the torque equation. |
| 7 | $$ I = \frac{R^{2}}{a}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})a\Bigr] $$ | Rearrange the equation to solve for the moment of inertia \(I\). |
| 8 | $$ h = \frac{1}{2}at^{2} $$ | Use the kinematics relation for the heavy mass \(m_{2}\) falling a distance \(h\) from rest. |
| 9 | $$ a = \frac{2h}{t^{2}} $$ | Solve for the acceleration \(a\) from the kinematics equation. |
| 10 | $$ I = \frac{R^{2}}{\frac{2h}{t^{2}}}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})\frac{2h}{t^{2}}\Bigr] $$ | Substitute \(a = \frac{2h}{t^{2}}\) into the expression for \(I\). |
| 11 | $$ I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1}) $$ | Simplify the expression to obtain \(I\) solely in terms of \(m_{1}, m_{2}, R, h, t\) and \(g\). |
| 12 | $$ \boxed{I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1})} $$ | This is the final algebraic expression for the pulley’s moment of inertia. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | $$ \Delta x = R\theta $$ | This equation relates the linear displacement \(\Delta x\) to the angular displacement \(\theta\) of the pulley. |
| 2 | $$ h = R\theta $$ | Since the heavy mass \(m_{2}\) falls a distance \(h\), the length of the unwound rope is \(h\), which equals \(R\theta\). |
| 3 | $$ \theta = \frac{h}{R} $$ | Solve for the angular displacement \(\theta\) of the pulley. |
| 4 | $$ \boxed{\theta = \frac{h}{R}} $$ | This is the final expression for the total rotation of the pulley in radians. |
Just ask: "Help me solve this problem."
Old-fashioned clocks and watches have an hour hand, a minute hand and a second hand. What is the angular frequency of the second hand?
A person’s center of mass is easily found by having the person lie on a reaction board. A horizontal, \( 2.3 \) \( \text{m} \)-long, \( 6.1 \) \( \text{kg} \) reaction board is supported only at the ends, with one end resting on a scale and the other on a pivot. A \( 64 \) \( \text{kg} \) woman lies on the reaction board with her feet over the pivot. The scale reads \( 27 \) \( \text{kg} \). What is the distance from the woman’s feet to her center of mass? Express your answer with the appropriate units.

A system consists of a disk rotating on a frictionless axle and a piece of clay moving toward it, as shown in the figure above. The outside edge of the disk is moving at a linear speed \( v \), and the clay is moving at speed \( \frac{v}{2} \). The clay sticks to the outside edge of the disk. How does the angular momentum of the system after the clay sticks compare to the angular momentum of the system before the clay sticks, and what is an explanation for the comparison?
A force of \(17 \, \text{N}\) is applied to the end of a \(0.63 \, \text{m}\) long torque wrench at an angle \(45^\circ\) from a line joining the pivot point to the handle. What is the magnitude of the torque about the pivot point produced by this force?
A ice skater that is spinning in circles has an initial rotational inertia Ii. You can approximate her shape to be a cylinder. She is spinning with velocity ωi. As she extends her arms she her rotational inertia changes by a factor of x and her angular velocity changes by a factor of y. Which one of the following options best describe x and y.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?