0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | $$ T_{1} – m_{1}g = m_{1}a $$ | This is Newton’s second law for mass \(m_{1}\) moving upward. |
| 2 | $$ m_{2}g – T_{2} = m_{2}a $$ | This is Newton’s second law for mass \(m_{2}\) moving downward. |
| 3 | $$ T_{1} = m_{1}g + m_{1}a \quad \text{and} \quad T_{2} = m_{2}g – m_{2}a $$ | Rearrange the equations to solve for the tensions in the string. |
| 4 | $$ (T_{2} – T_{1})R = I\left(\frac{a}{R}\right) $$ | This relates the net torque on the pulley to its moment of inertia \(I\) using the no‐slip condition \(\alpha = \frac{a}{R}\). |
| 5 | $$ T_{2} – T_{1} = \frac{I\,a}{R^{2}} $$ | Simplify the torque equation by dividing both sides by \(R\). |
| 6 | $$ (m_{2}g – m_{2}a) – (m_{1}g + m_{1}a) = $$$$(m_{2}-m_{1})g – (m_{2}+m_{1})a =$$$$\frac{I\,a}{R^{2}} $$ | Substitute the expressions for \(T_{1}\) and \(T_{2}\) into the torque equation. |
| 7 | $$ I = \frac{R^{2}}{a}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})a\Bigr] $$ | Rearrange the equation to solve for the moment of inertia \(I\). |
| 8 | $$ h = \frac{1}{2}at^{2} $$ | Use the kinematics relation for the heavy mass \(m_{2}\) falling a distance \(h\) from rest. |
| 9 | $$ a = \frac{2h}{t^{2}} $$ | Solve for the acceleration \(a\) from the kinematics equation. |
| 10 | $$ I = \frac{R^{2}}{\frac{2h}{t^{2}}}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})\frac{2h}{t^{2}}\Bigr] $$ | Substitute \(a = \frac{2h}{t^{2}}\) into the expression for \(I\). |
| 11 | $$ I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1}) $$ | Simplify the expression to obtain \(I\) solely in terms of \(m_{1}, m_{2}, R, h, t\) and \(g\). |
| 12 | $$ \boxed{I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1})} $$ | This is the final algebraic expression for the pulley’s moment of inertia. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | $$ \Delta x = R\theta $$ | This equation relates the linear displacement \(\Delta x\) to the angular displacement \(\theta\) of the pulley. |
| 2 | $$ h = R\theta $$ | Since the heavy mass \(m_{2}\) falls a distance \(h\), the length of the unwound rope is \(h\), which equals \(R\theta\). |
| 3 | $$ \theta = \frac{h}{R} $$ | Solve for the angular displacement \(\theta\) of the pulley. |
| 4 | $$ \boxed{\theta = \frac{h}{R}} $$ | This is the final expression for the total rotation of the pulley in radians. |
Just ask: "Help me solve this problem."
In a demonstration, a teacher holds the axle of a wheel that is spinning with constant angular speed. The teacher then releases the axle and the wheel begins to fall toward the ground. As the wheel falls, its angular speed remains constant. Which of the following correctly describes how the rotational kinetic energy \( K_{\text{rot}} \) of the wheel and the total kinetic energy \( K_{\text{tot}} \) of the wheel change, if at all, after the wheel is released but before it reaches the ground?
| \( K_{\text{rot}} \) | \( K_{\text{tot}} \) | |
|---|---|---|
| A | Constant | Constant |
| B | Constant | Increasing |
| C | Increasing | Constant |
| D | Increasing | Increasing |

The diagram above shows a top view of a child of mass \(M\) on a circular platform of mass \(2M\) that is rotating counterclockwise. Assume the platform rotates without friction. Which of the following describes an action by the child that will increase the angular speed of the platform-child system and gives the correct reason why?
Two masses, \( m_y = 32 \) \( \text{kg} \) and \( m_z = 38 \) \( \text{kg} \), are connected by a rope that hangs over a pulley. The pulley is a uniform cylinder of radius \( R = 0.311 \) \( \text{m} \) and mass \( 3.1 \) \( \text{kg} \). Initially, \( m_y \) is on the ground and \( m_z \) rests \( 2.5 \) \( \text{m} \) above the ground.
Consider a uniform hoop of radius \( R \) and mass \( M \) rolling without slipping. Which is larger, its translational kinetic energy or its rotational kinetic energy? Hint: The moment of inertia of a uniform hoop is \(I = M R^2\)
A solid sphere, solid cylinder, and a hollow pipe all have equal masses and radii. If the three of them are released simultaneously from the top of an inclined plane and do not slip, which one will reach the bottom first?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?