0 attempts
0% avg
UBQ Credits
| Derivation / Formula | Reasoning |
|---|---|
| \[P_g = \rho g h\] | Hydrostatic gauge pressure at depth \(h\) in a fluid of density \(\rho\). |
| \[P_g = (1.025\times10^{3})\,(9.8)\,(35)\] | Substitute \(\rho = 1.025\times10^{3}\;\text{kg/m}^3\), \(g = 9.8\;\text{m/s}^2\), \(h = 35\;\text{m}\). |
| \[\boxed{P_g \approx 3.5\times10^{5}\;\text{Pa}}\] | Numeric evaluation gives the gauge pressure. |
| Derivation / Formula | Reasoning |
|---|---|
| \[P_{abs} = P_{atm} + P_g\] | Absolute pressure equals atmospheric plus gauge pressure. |
| \[P_{abs} = 1.01\times10^{5} + 3.5\times10^{5}\] | Add standard atmospheric pressure \(P_{atm}=1.01\times10^{5}\;\text{Pa}\). |
| \[\boxed{P_{abs} \approx 4.5\times10^{5}\;\text{Pa}}\] | Numeric evaluation of absolute pressure. |
| Derivation / Formula | Reasoning |
|---|---|
| \[V = 1.0\times2.0\times0.03 = 0.06\;\text{m}^3\] | Volume of the rectangular plate. |
| \[m = \rho_{Al} V = (2.7\times10^{3})(0.06)\] | Mass from density of aluminum \(\rho_{Al}\). |
| \[m = 162\;\text{kg}\] | Numeric result for mass. |
| \[W = mg = 162\,(9.8)\] | Weight of the plate. |
| \[W = 1.59\times10^{3}\;\text{N}\] | Numeric value of weight. |
| \[F_b = \rho_{w} g V = (1.025\times10^{3})(9.8)(0.06)\] | Buoyant force using Archimedes’ principle, \(\rho_{w}\) is water density. |
| \[F_b \approx 6.0\times10^{2}\;\text{N}\] | Numeric value of the buoyant force. |
| \[T = W – F_b\] | For slow constant upward motion, net force is zero, so tension balances weight minus buoyancy. |
| \[\boxed{T \approx 9.8\times10^{2}\;\text{N}}\] | Calculated cable tension. |
| Derivation / Formula | Reasoning |
|---|---|
| \[T’ = W – F_b + m a\] | Newton’s second law: upward acceleration \(a\) requires extra upward force \(m a\). |
| \[m a > 0 \;\Rightarrow\; T’ > T\] | Since \(a = 0.05\;\text{m/s}^2\) is upward, the added term increases tension. |
| \[\boxed{T’ \text{ increases}}\] | Therefore, the cable tension becomes larger when the plate accelerates upward. |
Just ask: "Help me solve this problem."
Ben’s favorite ride at the Barrel-O-Fun Amusement Park is the Flying Umbrella, which is lifted by a hydraulic jack. The operator activates the ride by applying a force of \( 72 \) \( \text{N} \) to a \( 3.0 \) \( \text{cm} \) wide cylindrical piston, which holds the \( 20,000 \) \( \text{N} \) ride off the ground. What is the diameter of the piston that holds the ride?
Two objects labeled K and L have equal mass but densities \( 0.95D_o \) and \( D_o \), respectively. Each of these objects floats after being thrown into a deep swimming pool. Which is true about the buoyant forces acting on these objects?
The radius of the aorta is about \( 1 \) \( \text{cm} \) and the blood flowing through it has a speed of about \( 30 \) \( \frac{\text{cm}}{\text{s}} \). Calculate the average speed of the blood in the capillaries given the total cross section of all the capillaries is about \( 2000 \) \( \text{cm}^2 \).
Johnny the auto mechanic is raising a \( 1200 \) \( \text{kg} \) car on her hydraulic lift so that she can work underneath. If the area of the input piston is \( 12 \) \( \text{cm}^2 \), while the output piston has an area of \( 700 \) \( \text{cm}^2 \), what force must be exerted on the input piston to lift the car?

Water flows from point \( A \) to points \( D \) and \( E \) as shown. Some of the flow parameters are known, as shown in the table. Determine the unknown parameters. Note the diagram above does not show the relative diameters of each section of the pipe.
| Section | Diameter | Flow Rate | Velocity |
|---|---|---|---|
| \( \text{AB} \) | \( 300 \) \( \text{mm} \) | \(\textbf{?}\) | \(\textbf{?}\) |
| \( \text{BC} \) | \( 600 \) \( \text{mm} \) | \(\textbf{?}\) | \( 1.2 \) \( \text{m/s} \) |
| \( \text{CD} \) | \(\textbf{?}\) | \( Q_{CD} = 2Q_{CE} \) \( \text{m}^3/\text{s} \) | \( 1.4 \) \( \text{m/s} \) |
| \( \text{CE} \) | \( 150 \) \( \text{mm} \) | \( Q_{CE} = 0.5Q_{CD} \) \( \text{m}^3/\text{s} \) | \(\textbf{?}\) |
\(P_g \approx 3.5\times10^{5}\,\text{Pa}\)
\(P_{abs} \approx 4.5\times10^{5}\,\text{Pa}\)
\(T \approx 9.8\times10^{2}\,\text{N}\)
\(T \text{ increases}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?