0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ h = \frac{(v_i \sin 50^\circ)^2}{2g} \] | This is the formula for the maximum height reached by a projectile in terms of the initial speed \(v_i\) and launch angle \(50^\circ\). |
2 | \[ 0.150 = \frac{(v_i \sin 50^\circ)^2}{2 \times 9.8} \] | Substitute the given maximum height \(h = 0.150\,m\) and \(g = 9.8\,m/s^2\) into the formula. |
3 | \[ (v_i \sin 50^\circ)^2 = 0.150 \times 19.6 \] | Multiply both sides by \(2 \times 9.8 = 19.6\) to isolate the squared term. |
4 | \[ (v_i \sin 50^\circ)^2 = 2.94 \] | Calculating \(0.150 \times 19.6\) gives \(2.94\). |
5 | \[ v_i \sin 50^\circ = \sqrt{2.94} \] | Apply the square root to both sides to solve for \(v_i \sin 50^\circ\). |
6 | \[ v_i = \frac{\sqrt{2.94}}{\sin 50^\circ} \] | Solve for the initial speed \(v_i\) by dividing by \(\sin 50^\circ\). |
7 | \[ v_i \approx \frac{1.714}{0.766} \approx 2.24\,m/s \] | Using \(\sqrt{2.94} \approx 1.714\) and \(\sin 50^\circ \approx 0.766\), we calculate \(v_i \approx 2.24\,m/s\). |
8 | \[ \boxed{v_i \approx 2.24\,m/s} \] | This is the final speed at which the water leaves the fountain. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ A = \pi r^2 \] | Calculate the cross-sectional area of the fountain’s exit hole, where \(r = 4.00 \times 10^{-3}\,m\). |
2 | \[ A = \pi (4.00 \times 10^{-3})^2 = \pi (16.00 \times 10^{-6}) \approx 5.03 \times 10^{-5}\,m^2 \] | Squaring the radius and multiplying by \(\pi\) gives the area. |
3 | \[ Q = A \times v_i \] | The volume rate of flow \(Q\) is found by multiplying the exit hole area by the speed \(v_i\) from part (a). |
4 | \[ Q \approx 5.03 \times 10^{-5}\,m^2 \times 2.24\,m/s \approx 1.13 \times 10^{-4}\,m^3/s \] | Multiply the area by the speed to obtain the volumetric flow rate. |
5 | \[ \boxed{Q \approx 1.13 \times 10^{-4}\,m^3/s} \] | This is the final volume rate of flow of the water. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ P = \rho g h \] | The gauge pressure due to a fluid column is given by \(P = \rho g h\), where \(h\) is the vertical distance below the fountain’s opening. |
2 | \[ P = (1.0 \times 10^3\,kg/m^3)(9.8\,m/s^2)(3.00\,m) \] | Substitute the density \(\rho = 1.0 \times 10^3\,kg/m^3\), gravitational acceleration \(g = 9.8\,m/s^2\), and height \(h = 3.00\,m\) into the formula. |
3 | \[ P = 29,400\,Pa \] | Multiplying gives the gauge pressure at the point in the feeder pipe. |
4 | \[ \boxed{P \approx 2.94 \times 10^4\,Pa} \] | This is the final gauge pressure in the feeder pipe at 3.00 m below the fountain’s opening. |
Just ask: "Help me solve this problem."
A spherical balloon has a radius of \(7.15\) \(\text{m}\) and is filled with helium. How large a cargo can it lift, assuming that the skin and structure of the balloon have a mass of \(930\) \(\text{kg}\)?
Take the density of helium and air to be \(0.18\) \(\text{kg/m}^3\) and \(1.24\) \(\text{kg/m}^3\), respectively.
Which of the following statements is an expression of the equation of continuity?
A rocket is fired at a speed of 75.0 m/s from ground level, at an angle of 60.0° above the horizontal. The rocket is fired toward an 11.0-m-high wall, which is located 27.0 m away. The rocket attains its launch speed in a negligibly short period of time, after which its engines shut down and the rocket coasts. By how much does the rocket clear the top of the wall?
A helium-filled balloon is attached by a string of negligible mass to a small \(0.015 \ \text{kg}\) object that is just heavy enough to keep the balloon from rising. The total mass of the balloon, including the helium, is \(0.0050 \ \text{kg}\). The density of air is \(\rho_{\text{air}} = 1.29 \ \text{kg/m}^3\), and the density of helium is \(\rho_{\text{He}} = 0.179 \ \text{kg/m}^3\). The buoyant force on the \(0.015 \ \text{kg}\) object is small enough to be negligible.
On a distant planet, golf is just as popular as it is on earth. A golfer tees off and drives the ball 3.5 times as far as he would have on earth, given the same initial velocities on both planets. The ball is launched at a speed of 45 m/s at an angle of 29° above the horizontal. When the ball lands, it is at the same level as the tee. On the distant planet find:
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) | Â |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
 | \(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.Â
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.Â
Submitting counts as 1 attempt.Â
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.Â
10 Free Credits To Get You StartedÂ
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.Â