0 attempts
0% avg
UBQ Credits
| Derivation/Formula | Reasoning |
|---|---|
| \[0 = v_{iy}^2 – 2 g h\] | At maximum height the vertical speed is zero, so using \(v_y^2 = v_{iy}^2 – 2 g \Delta y\) with \(\Delta y = h\). |
| \[v_{iy} = \sqrt{2 g h}\] | Solve the previous equation for the initial vertical component \(v_{iy}\). |
| \[v_0 = \frac{v_{iy}}{\sin\theta}\] | Relate total launch speed to its vertical component using \(v_{iy} = v_0 \sin\theta\). |
| \[\boxed{v_0 \approx 2.24\,\text{m/s}}\] | Insert \(g = 9.80\,\text{m/s}^2\), \(h = 0.150\,\text{m}\), and \(\theta = 50^{\circ}\). |
| Derivation/Formula | Reasoning |
|---|---|
| \[A_f = \pi r_f^2\] | Cross-sectional area of the fountain opening with radius \(r_f = 4.00\times10^{-3}\,\text{m}\). |
| \[Q = A_f v_0\] | Volume flow rate equals area times exit speed \(v_0\). |
| \[\boxed{Q \approx 1.13\times10^{-4}\,\text{m}^3/\text{s}}\] | Insert \(A_f = 5.03\times10^{-5}\,\text{m}^2\) and \(v_0 = 2.24\,\text{m/s}\). |
| Derivation/Formula | Reasoning |
|---|---|
| \[A_p = \pi r_p^2\] | Area of feeder pipe with \(r_p = 7.00\times10^{-3}\,\text{m}\). |
| \[v_p = \frac{A_f}{A_p} v_0\] | Continuity equation \(A_f v_0 = A_p v_p\) gives pipe speed \(v_p\). |
| \[P_p + \tfrac{1}{2}\rho v_p^2 + \rho g y_p = P_0 + \tfrac{1}{2}\rho v_0^2 + \rho g y_0\] | Bernoulli between pipe point (subscript \(p\)) and nozzle (subscript \(0\)); nozzle pressure is atmospheric, taken as zero gauge. |
| \[P_p = \tfrac{1}{2}\rho (v_0^2 – v_p^2) + \rho g (y_0 – y_p)\] | Rearrange for gauge pressure; \(y_0 = 0\) at nozzle, \(y_p = -3.00\,\text{m}\). |
| \[\boxed{P_p \approx 3.16\times10^{4}\,\text{Pa}}\] | Insert \(\rho = 1.0\times10^{3}\,\text{kg/m}^3\), \(v_0 = 2.24\,\text{m/s}\), \(v_p = 0.731\,\text{m/s}\), and \(g = 9.80\,\text{m/s}^2\). |
Just ask: "Help me solve this problem."

Three identical reservoirs, \(A\), \(B\), and \(C\), are represented above, each with a small pipe where water exits horizontally. The pipes are set at the same height above a pool of water. The water in the reservoirs is kept at the levels shown. Which of the following correctly ranks the horizontal distances \( d \) that the streams of water travel before hitting the surface of the pool?
On a distant planet, golf is just as popular as it is on Earth. A golfer tees off and drives the ball \(3.5\) times as far as he would have on Earth, given the same initial velocities on both planets. The ball is launched at a speed of \(45 \, \text{m/s}\) at an angle of \(29^\circ\) above the horizontal. When the ball lands, it is at the same level as the tee. On the distant planet find:
Which statements are not valid for a projectile? Take up as positive.
Which launch angle gives the greatest horizontal range, assuming level ground and no air resistance?
A ball is thrown horizontally from the roof of a building \( 7.5 \) \( \text{m} \) tall and lands \( 9.5 \) \( \text{m} \) from the base. What was the ball’s initial speed?
\(2.24\,\text{m/s}\)
\(1.13\times10^{-4}\,\text{m}^3/\text{s}\)
\(3.16\times10^{4}\,\text{Pa}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?