AP Physics

Unit 8 - Fluids

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a): Calculate water exit speed

Step Derivation/Formula Reasoning
1 \[ h = \frac{(v_i \sin 50^\circ)^2}{2g} \] This is the formula for the maximum height reached by a projectile in terms of the initial speed \(v_i\) and launch angle \(50^\circ\).
2 \[ 0.150 = \frac{(v_i \sin 50^\circ)^2}{2 \times 9.8} \] Substitute the given maximum height \(h = 0.150\,m\) and \(g = 9.8\,m/s^2\) into the formula.
3 \[ (v_i \sin 50^\circ)^2 = 0.150 \times 19.6 \] Multiply both sides by \(2 \times 9.8 = 19.6\) to isolate the squared term.
4 \[ (v_i \sin 50^\circ)^2 = 2.94 \] Calculating \(0.150 \times 19.6\) gives \(2.94\).
5 \[ v_i \sin 50^\circ = \sqrt{2.94} \] Apply the square root to both sides to solve for \(v_i \sin 50^\circ\).
6 \[ v_i = \frac{\sqrt{2.94}}{\sin 50^\circ} \] Solve for the initial speed \(v_i\) by dividing by \(\sin 50^\circ\).
7 \[ v_i \approx \frac{1.714}{0.766} \approx 2.24\,m/s \] Using \(\sqrt{2.94} \approx 1.714\) and \(\sin 50^\circ \approx 0.766\), we calculate \(v_i \approx 2.24\,m/s\).
8 \[ \boxed{v_i \approx 2.24\,m/s} \] This is the final speed at which the water leaves the fountain.

Part (b): Calculate volume rate of flow

Step Derivation/Formula Reasoning
1 \[ A = \pi r^2 \] Calculate the cross-sectional area of the fountain’s exit hole, where \(r = 4.00 \times 10^{-3}\,m\).
2 \[ A = \pi (4.00 \times 10^{-3})^2 = \pi (16.00 \times 10^{-6}) \approx 5.03 \times 10^{-5}\,m^2 \] Squaring the radius and multiplying by \(\pi\) gives the area.
3 \[ Q = A \times v_i \] The volume rate of flow \(Q\) is found by multiplying the exit hole area by the speed \(v_i\) from part (a).
4 \[ Q \approx 5.03 \times 10^{-5}\,m^2 \times 2.24\,m/s \approx 1.13 \times 10^{-4}\,m^3/s \] Multiply the area by the speed to obtain the volumetric flow rate.
5 \[ \boxed{Q \approx 1.13 \times 10^{-4}\,m^3/s} \] This is the final volume rate of flow of the water.

Part (c): Calculate gauge pressure in feeder pipe

Step Derivation/Formula Reasoning
1 \[ P = \rho g h \] The gauge pressure due to a fluid column is given by \(P = \rho g h\), where \(h\) is the vertical distance below the fountain’s opening.
2 \[ P = (1.0 \times 10^3\,kg/m^3)(9.8\,m/s^2)(3.00\,m) \] Substitute the density \(\rho = 1.0 \times 10^3\,kg/m^3\), gravitational acceleration \(g = 9.8\,m/s^2\), and height \(h = 3.00\,m\) into the formula.
3 \[ P = 29,400\,Pa \] Multiplying gives the gauge pressure at the point in the feeder pipe.
4 \[ \boxed{P \approx 2.94 \times 10^4\,Pa} \] This is the final gauge pressure in the feeder pipe at 3.00 m below the fountain’s opening.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(2.24\,m/s\)
  2. \(1.13 \times 10^{-4}\,m^3/s\)
  3. \(2.94 \times 10^4\,Pa\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.