0 attempts
0% avg
UBQ Credits
Derivation or Formula | Reasoning |
---|---|
\[W_{\text{air}} = \rho_{\text{rock}} V g\] | This is the full weight of the rock in air, where \(\rho_{\text{rock}}\) is the rock density, \(V\) is its volume, and \(g\) is gravitational acceleration. |
\[W_{\text{water}} = \rho_{\text{rock}}Vg – \rho_{\text{water}}Vg\] | The apparent weight when submerged is the true weight minus the buoyant force, which equals the weight of the displaced water \((\rho_{\text{water}}Vg)\). |
\[\rho_{\text{rock}}Vg – \rho_{\text{water}}Vg = \tfrac{1}{2}\,\rho_{\text{rock}}Vg\] | The problem states the rock weighs twice as much in air as in water, so \(W_{\text{water}} = \tfrac{1}{2}W_{\text{air}}\). Substitute \(W_{\text{air}}\) above. |
\[\rho_{\text{rock}} – \rho_{\text{water}} = \tfrac{1}{2}\,\rho_{\text{rock}}\] | Canceling the common factors \(Vg\) from both sides simplifies the equation. |
\[2\,\rho_{\text{rock}} – 2\,\rho_{\text{water}} = \rho_{\text{rock}}\] | Multiply both sides by 2 to clear the fraction. |
\[\rho_{\text{rock}} = 2\,\rho_{\text{water}}\] | Solve for \(\rho_{\text{rock}}\) by subtracting \(\rho_{\text{rock}}\) from both sides. |
\[\rho_{\text{rock}} = 2 \times 1000\,\text{kg/m}^3 = \boxed{2000\,\text{kg/m}^3}\] | Assuming the density of water is \(1000\,\text{kg/m}^3\), the rock density becomes \(2000\,\text{kg/m}^3\) (to 3 significant figures). |
Derivation or Formula | Reasoning |
---|---|
\[\rho_{\text{avg}} = p\,\rho_{\text{quartz}} + (1-p)\times0 = p\,\rho_{\text{quartz}}\] | The rock is part solid quartz and part hollow (air). Since the density of air is negligible, \(\rho_{\text{avg}}\) is just the fraction \(p\) of quartz times the density of quartz \(\rho_{\text{quartz}}\). |
\[p = \tfrac{\rho_{\text{avg}}}{\rho_{\text{quartz}}}\] | Solve for \(p\) (the fraction that is solid quartz) using the average density, which we determined as \(2000\,\text{kg/m}^3\), and the given quartz density \(2660\,\text{kg/m}^3\). |
\[p = \tfrac{2000}{2660} \approx 0.752\] | Calculate \(p\) to determine the fraction of the rock that is quartz. |
\[\text{Percentage hollow} = (1-p) \times 100\% \approx (1-0.752) \times 100\% \approx \boxed{24.8\%}\] | The remainder of the rock (\(1-p\)) is hollow. Converting to a percentage gives about 24.8\% hollow, to 3 significant figures. |
Just ask: "Help me solve this problem."
A cylindrical tank of water (height \( H \)) is punctured at a height \( h \) above the bottom. How far from the base of the tank will the water stream land (in terms of \( h \) and \( H \))? What must the value of \( h \) be such that the distance at which the stream lands will be equal to \( H \)?
An ideal fluid flows through a pipe with radius \( Q \) and flow speed \( V \). If the pipe splits up into three separate paths, each with radius \( \frac{Q}{2} \), what is the flow speed through each of the paths?
Water flows from point \( A \) to points \( D \) and \( E \) as shown. Some of the flow parameters are known, as shown in the table. Determine the unknown parameters. Note the diagram above does not show the relative diameters of each section of the pipe.
Section | Diameter | Flow Rate | Velocity |
---|---|---|---|
\( \text{AB} \) | \( 300 \) \( \text{mm} \) | Â \(\textbf{?}\) | Â \(\textbf{?}\) |
\( \text{BC} \) | \( 600 \) \( \text{mm} \) | Â \(\textbf{?}\) | \( 1.2 \) \( \text{m/s} \) |
\( \text{CD} \) | Â \(\textbf{?}\) | \( Q_{CD} = 2Q_{CE} \) \( \text{m}^3/\text{s} \) | \( 1.4 \) \( \text{m/s} \) |
\( \text{CE} \) | \( 150 \) \( \text{mm} \) | \( Q_{CE} = 0.5Q_{CD} \) \( \text{m}^3/\text{s} \) | Â \(\textbf{?}\) |
A fountain with an opening of radius \( 0.015 \) \( \text{m} \) shoots a stream of water vertically from ground level at \( 6.0 \) \( \text{m/s} \). The density of water is \( 1000 \) \( \text{kg/m}^3 \).
A solid titanium sphere of radius \( 0.35 \) \( \text{m} \) has a density \( 4500 \) \( \text{kg/m}^3 \). It is held suspended completely underwater by a cable. What is the tension in the cable?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) | Â |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
 | \(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.Â
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.Â
Submitting counts as 1 attempt.Â
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.Â
10 Free Credits To Get You StartedÂ
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.Â