AP Physics

Unit 8 - Fluids

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a): Gauge Pressure at Faucet A

Step Derivation/Formula Reasoning
1 \[h_A = 15.0 \, \text{m}\] The height of water above faucet A is given as 15.0 meters.
2 \[P_{gA} = \rho g h_A\] The gauge pressure at a depth is calculated using the formula, where \(\rho\) is the density of water \(\approx 1000 \, \text{kg/m}^3\), and \(g\) is the acceleration due to gravity \( \approx 9.81 \, \text{m/s}^2 \).
3 \[P_{gA} = (1000)(9.81)(15)\] Substitute the known values into the gauge pressure equation.
4 \[P_{gA} = 147150 \, \text{Pa}\] Calculate the gauge pressure at faucet A.

Part (b): Gauge Pressure at Faucet B

Step Derivation/Formula Reasoning
1 \[h_B = 15.0 – 7.30 \, \text{m}\] Calculate the height of water above faucet B, given as 7.30 meters below the reservoir base.
2 \[h_B = 7.70 \, \text{m}\] Find the effective height of water above faucet B.
3 \[P_{gB} = \rho g h_B\] The gauge pressure at faucet B is calculated using the effective height \(h_B\).
4 \[P_{gB} = (1000)(9.81)(7.70)\] Substitute the known values into the gauge pressure equation for B.
5 \[P_{gB} = 75537 \, \text{Pa}\] Calculate the gauge pressure at faucet B.

Part (c): Time to Fill Container at Faucet A

Step Derivation/Formula Reasoning
1 \[r = \frac{1.20}{2} \, \text{cm} = 0.006 \, \text{m}\] Convert the diameter of the faucet to meters and find the radius.
2 \[A = \pi r^2 = \pi (0.006)^2\] Calculate the cross-sectional area of the faucet.
3 \[A \approx 1.131 \times 10^{-4} \, \text{m}^2\] Evaluate the area of the faucet.
4 \[v = \sqrt{\frac{2P_{gA}}{\rho}}\] Calculate the velocity of water flowing out, using Bernoulli’s principle where \(P_{gA}\) is the gauge pressure at faucet A.
5 \[v = \sqrt{\frac{2(147150)}{1000}}\] Substitute the gauge pressure and density of water to find velocity.
6 \[v \approx 17.14 \, \text{m/s}\] Calculate the velocity of water at the faucet.
7 \[Q = A \times v = 1.131 \times 10^{-4} \times 17.14\] Find the flow rate \(Q\) using the area and the velocity.
8 \[Q \approx 0.00194 \, \text{m}^3/\text{s}\] Evaluate the flow rate of water through the faucet.
9 \[V_{container} = 5.00 \times 3.785 \times 10^{-3} \, \text{m}^3\] Convert 5 gallons to cubic meters using the conversion \(1\, \text{gallon} = 3.785 \times 10^{-3} \, \text{m}^3\).
10 \[V_{container} = 0.01893 \, \text{m}^3\] Calculate the volume of the container in cubic meters.
11 \[t = \frac{V_{container}}{Q} = \frac{0.01893}{0.00194}\] Determine the time to fill the container by dividing the volume of water by the flow rate.
12 \[t \approx 9.76 \, \text{s}\] Calculate the time required to fill the container with water.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(147150 \text{Pa}\)
  2. \(75537 \text{Pa}\)
  3. \(9.76 \text{s}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.