0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[h_A = 15.0 \, \text{m}\] | The height of water above faucet A is given as 15.0 meters. |
2 | \[P_{gA} = \rho g h_A\] | The gauge pressure at a depth is calculated using the formula, where \(\rho\) is the density of water \(\approx 1000 \, \text{kg/m}^3\), and \(g\) is the acceleration due to gravity \( \approx 9.81 \, \text{m/s}^2 \). |
3 | \[P_{gA} = (1000)(9.81)(15)\] | Substitute the known values into the gauge pressure equation. |
4 | \[P_{gA} = 147150 \, \text{Pa}\] | Calculate the gauge pressure at faucet A. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[h_B = 15.0 – 7.30 \, \text{m}\] | Calculate the height of water above faucet B, given as 7.30 meters below the reservoir base. |
2 | \[h_B = 7.70 \, \text{m}\] | Find the effective height of water above faucet B. |
3 | \[P_{gB} = \rho g h_B\] | The gauge pressure at faucet B is calculated using the effective height \(h_B\). |
4 | \[P_{gB} = (1000)(9.81)(7.70)\] | Substitute the known values into the gauge pressure equation for B. |
5 | \[P_{gB} = 75537 \, \text{Pa}\] | Calculate the gauge pressure at faucet B. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[r = \frac{1.20}{2} \, \text{cm} = 0.006 \, \text{m}\] | Convert the diameter of the faucet to meters and find the radius. |
2 | \[A = \pi r^2 = \pi (0.006)^2\] | Calculate the cross-sectional area of the faucet. |
3 | \[A \approx 1.131 \times 10^{-4} \, \text{m}^2\] | Evaluate the area of the faucet. |
4 | \[v = \sqrt{\frac{2P_{gA}}{\rho}}\] | Calculate the velocity of water flowing out, using Bernoulli’s principle where \(P_{gA}\) is the gauge pressure at faucet A. |
5 | \[v = \sqrt{\frac{2(147150)}{1000}}\] | Substitute the gauge pressure and density of water to find velocity. |
6 | \[v \approx 17.14 \, \text{m/s}\] | Calculate the velocity of water at the faucet. |
7 | \[Q = A \times v = 1.131 \times 10^{-4} \times 17.14\] | Find the flow rate \(Q\) using the area and the velocity. |
8 | \[Q \approx 0.00194 \, \text{m}^3/\text{s}\] | Evaluate the flow rate of water through the faucet. |
9 | \[V_{container} = 5.00 \times 3.785 \times 10^{-3} \, \text{m}^3\] | Convert 5 gallons to cubic meters using the conversion \(1\, \text{gallon} = 3.785 \times 10^{-3} \, \text{m}^3\). |
10 | \[V_{container} = 0.01893 \, \text{m}^3\] | Calculate the volume of the container in cubic meters. |
11 | \[t = \frac{V_{container}}{Q} = \frac{0.01893}{0.00194}\] | Determine the time to fill the container by dividing the volume of water by the flow rate. |
12 | \[t \approx 9.76 \, \text{s}\] | Calculate the time required to fill the container with water. |
Just ask: "Help me solve this problem."
In the laboratory, you are given a cylindrical beaker containing a fluid and you are asked to determine the density \( \rho \) of the fluid. You are to use a spring of negligible mass and unknown spring constant \( k \) that is attached to a vertical stand.
A sphere of mass \(0.5\) \(\text{kg}\) is dropped into a column of oil. At the instant the sphere becomes completely submerged in the oil, the sphere is moving downward at \(8\) \(\text{m/s}\), the buoyancy force on the sphere is \(4.0\) \(\text{N}\), and the fluid frictional force is \(4.0\) \(\text{N}\). Which of the following describes the motion of the sphere at this instant?
A diver descends from a salvage ship to the ocean floor at a depth of \(35 \text{ m}\) below the surface. The density of ocean water is \(1.025 \times 10^3 \text{ kg/m}^3\).
Caleb is filling up water balloons for the Physics Olympics balloon toss competition. Caleb sets a \( 0.50 \text{-kg} \) spherical water balloon on the kitchen table and notices that the bottom of the balloon flattens until the pressure on the bottom is reduced to \( 630 \frac{\text{N}}{\text{m}^2} \). What is the area of the flat spot on the bottom of the balloon?
A horizontal tube with two vertical T-branches (A and B) is partially submerged in a liquid, with the open ends of the branches exposed to the air. However, the section of the tube above point B is hidden from view and may either be wider or narrower than the section above A.
Air is blown through the horizontal tube, causing the liquid levels in the vertical branches to rise as shown. Based on the observed water levels, which of the following best describes the characteristics of the hidden section of the tube above B?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) | Â |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
 | \(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.Â
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.Â
Submitting counts as 1 attempt.Â
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.Â
10 Free Credits To Get You StartedÂ
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.Â