0 attempts
0% avg
UBQ Credits
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[ h = \frac{(v_i \sin\theta)^2}{2g} \] | This is the formula for the maximum height reached by a projectile in terms of its initial speed and launch angle. |
| 2 | \[ h_A = \frac{(v_i \sin\theta_A)^2}{2g} \quad \text{and} \quad h_B = \frac{(v_i \sin\theta_B)^2}{2g} \] | Since the initial speeds are identical, the maximum heights depend solely on the \(\sin\theta\) factors. |
| 3 | \[ \sin\theta_A > \sin\theta_B \] | With \(\theta_A\) being larger than \(\theta_B\), its sine is larger, leading to a higher maximum height for cannonball A. |
| 4 | \[ \boxed{\text{Cannonball A reaches higher elevation.}} \] | This is the final conclusion based on the above reasoning. |
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[ T = \frac{2 v_i \sin\theta}{g} \] | This equation gives the total time a projectile stays in the air, dependent on its vertical velocity component. |
| 2 | \[ T_A = \frac{2 v_i \sin\theta_A}{g} \quad \text{and} \quad T_B = \frac{2 v_i \sin\theta_B}{g} \] | Both cannonballs have the same initial speed, so the difference in time of flight comes from their \(\sin\theta\) values. |
| 3 | \[ \sin\theta_A > \sin\theta_B \] | Because \(\theta_A > \theta_B\), cannonball A has a larger vertical component leading to a longer flight time. |
| 4 | \[ \boxed{\text{Cannonball A stays longer in the air.}} \] | This completes the explanation for the time-of-flight comparison. |
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[ R = \frac{v_i^2 \sin 2\theta}{g} \] | This is the formula for the horizontal range of a projectile, which depends on \(\sin 2\theta\). The maximum value of \(\sin 2\theta\) is 1, occurring at \(\theta = 45^\circ\). Note you should be able to derive this formula using your knowledge of projectile motion. |
| 2 | \[ R_A = \frac{v_i^2 \sin 2\theta_A}{g} \quad \text{and} \quad R_B = \frac{v_i^2 \sin 2\theta_B}{g} \] | While both cannonballs have the same speed, the range depends critically on the factor \(\sin 2\theta\). |
| 3 | \[ \text{Since } \theta_B \text{ is closer to } 45^\circ, \; \sin 2\theta_B > \sin 2\theta_A \] | This implies that cannonball B, with an angle nearer to optimum, achieves a greater horizontal displacement. |
| 4 | \[ \boxed{\text{Cannonball B travels farther.}} \] | This is the final conclusion based on the range formula. |
Just ask: "Help me solve this problem."

A ball of mass \(m\) is released from rest at a distance \(h\) above a frictionless plane inclined at an angle of \(45^\circ\) to the horizontal as shown above. The ball bounces horizontally off the plane at point \(P_1\) with the same speed with which it struck the plane and strikes the plane again at point \(P_2\). In terms of \(g\) and \(h\), determine each of the following quantities:
Two balls are launched at the same time from opposite sides of a \( 100 \) \( \text{m} \) wide and \(1000 ~\text{m}\) canyon. Ball A is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the left side. Ball B is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the right side.
A golfer hits a shot to a green that is elevated \(2.80 \, \text{m}\) above the point where the ball is struck. The ball leaves the club at a speed of \(18.9 \, \text{m/s}\) at an angle of \(52.0^\circ\) above the horizontal. It rises to its maximum height and then falls down to the green. Ignoring air resistance, find the speed of the ball just before it lands.
A textbook is launched up with a speed of 20 m/s, at an angle of 36°, from a 12 m high roof.
A drinking fountain projects water at an initial angle of \( 50^ \circ \) above the horizontal, and the water reaches a maximum height of \( 0.150 \) \( \text{m} \) above the point of exit. Assume air resistance is negligible.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?