0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[J = \Delta p = m v_x – m v_i\] | Impulse \(J\) delivered to the door equals the change in momentum of either projectile (mass \(m\), initial speed \(v_i\), final speed \(v_x\)). |
| 2 | \[J_{\text{clay}} = m(0) – m v_i = -m v_i\] | The clay sticks, so \(v_x = 0\). Magnitude of impulse on the door is \(m v_i\). |
| 3 | \[J_{\text{superball}} = m(-v_i) – m v_i = -2 m v_i\] | The superball rebounds elastically, so \(v_x = -v_i\). Magnitude of impulse on the door is \(2 m v_i\). |
| 4 | \[|J_{\text{superball}}| = 2 |J_{\text{clay}}|\] | The superball delivers twice the impulse of the clay, producing a larger torque to swing the door shut. |
| 5 | \[\boxed{\text{Superball is more effective}}\] | (a) Correct—largest impulse. (b) Incorrect—only half the impulse. (c) Incorrect—impulses differ. (d) Incorrect—either supplies some impulse. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
A fisherman is standing in the back of his small fishing boat (the mass of the fisherman is the same as the mass of the boat) and he is a few meters from shore. He is done fishing so he starts walking towards the shore so he can get off the boat. What happens to the boat and the fisherman? Select all that apply and assume there is no friction between the boat and the water.
A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with nearly the same speed with which it hit. The clay sticks to the wall. Which one of these objects experiences the greater impulse?
A golf club exerts an average horizontal force of \(1000 \, \text{N}\) on a \(0.045 \, \text{kg}\) golf ball that is initially at rest on the tee. The club is in contact with the ball for \(1.8 \, \text{milliseconds}\). What is the speed of the golf ball just as it leaves the tee?
A \( 1.0 \, \text{kg} \) lump of clay is sliding to the right on a frictionless surface with a speed of \( 2 \, \text{m/s} \). It collides head-on and sticks to a \( 0.5 \, \text{kg} \) metal sphere that is sliding to the left with a speed of \( 4 \, \text{m/s} \). What is the kinetic energy of the combined objects after the collision?

Refer to the diagram above and solve all equations in terms of \(R\), \(M\), \(k\), and constants.
An astronaut initially at rest in space throws a wrench, and recoils in the opposite direction. Select all that is true.
A rubber ball bounces off of a wall with an initial speed \(v\) and reverses its direction so its speed is \(v\) right after the bounce. As a result of this bounce, which of the following quantities of the ball are conserved?
An egg dropped on the road usually beaks, while one dropped on the grass usually does not break because for the egg dropped on the grass:
An object at rest suddenly explodes into two fragments (\(m_1\) and \(m_2\)) by an explosion. Fragment \(m_1\) acquires \(3\) times the kinetic energy of the other. What is the ratio of \(m_1\) to \(m_2\)?
| Experiment | Initial Velocity of Cart X \( (\text{m/s}) \) | Initial Velocity of Cart Y \( (\text{m/s}) \) | Final Velocity of Cart X \( (\text{m/s}) \) | Final Velocity of Cart Y \( (\text{m/s}) \) |
|---|---|---|---|---|
| \( 1 \) | \( 1 \) | \( 0 \) | \( 0 \) | \( 1 \) |
| \( 2 \) | \( 1 \) | \( -1 \) | \( -1 \) | \( 1 \) |
| \( 3 \) | \( 2 \) | \( 1 \) | \( 1 \) | \( 2 \) |
A student performs several experiments in which two carts collide as they travel along a horizontal surface. Cart X and Cart Y both have a mass of \( 1 \) \( \text{kg} \). Data collected from the three experiments are shown in the table above. During which experiment does the center of mass of the system of two carts have the greatest change in its momentum?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?