0 attempts
0% avg
UBQ Credits
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[v_{x}^{2}=v_{i}^{2}+2(-g)\Delta x\] | Use the kinematic relation \(v_{x}^{2}=v_{i}^{2}+2a\Delta x\) with upward positive (so \(a=-g\)). \(v_{x}=14\,\text{m/s}\) at the window, \(\Delta x=18\,\text{m}\). |
2 | \[v_{i}^{2}=v_{x}^{2}+2g\Delta x\] | Algebraically solve for \(v_{i}^{2}\). |
3 | \[v_{i}^{2}=14^{2}+2(9.8)(18)=196+352.8=548.8\] | Substitute the numerical values. |
4 | \[\boxed{v_{i}=23.5\,\text{m/s}}\] | Take the square root to obtain the initial speed. |
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[0=v_{i}^{2}+2(-g)\Delta x_{\text{max}}\] | At the peak, the final velocity is zero, so set \(v_{x}=0\). |
2 | \[\Delta x_{\text{max}}=\frac{v_{i}^{2}}{2g}\] | Re-arrange for the upward displacement from the street. |
3 | \[\Delta x_{\text{max}}=\frac{548.8}{19.6}=28\,\text{m}\] | Insert \(v_{i}^{2}=548.8\) and \(g=9.8\,\text{m/s}^{2}\). |
4 | \[\boxed{28\,\text{m}}\] | The ball rises 28 m above the street. |
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[v_{x}=v_{i}-g t_{1}\] | Use \(v_{x}=v_{i}+at\) with \(a=-g\) to relate velocities and time. |
2 | \[t_{1}=\frac{v_{i}-v_{x}}{g}\] | Solve for \(t_{1}\), the interval from the throw to passing the window upward. |
3 | \[t_{1}=\frac{23.5-14}{9.8}=0.964\,\text{s}\] | Insert the numerical values. |
4 | \[\boxed{0.96\,\text{s}}\] | The ball was thrown roughly one second before being seen at the window. |
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[T_{\text{total}}=\frac{2v_{i}}{g}\] | For motion that starts and ends at the same height, total flight time is twice the time to the peak, \(v_{i}/g\). |
2 | \[T_{\text{total}}=\frac{2(23.5)}{9.8}=4.79\,\text{s}\] | Insert \(v_{i}=23.5\,\text{m/s}\) and \(g=9.8\,\text{m/s}^{2}\). |
3 | \[t_{\text{after window}}=T_{\text{total}}-t_{1}=4.79-0.96=3.83\,\text{s}\] | Subtract the elapsed time before passing the window to find the interval after it. |
4 | \[\boxed{4.8\,\text{s}\;\text{(total from throw)}}\] | The ball returns to the street 4.8 s after being thrown, i.e., about 3.8 s after passing the window. |
Just ask: "Help me solve this problem."
On a strange, airless planet, a ball is thrown downward from a height of \( 17 \, \text{m} \). The ball initially travels at \( 15 \, \text{m/s} \). If the ball hits the ground in \( 1 \, \text{s} \), what is this planet’s gravitational acceleration?
You drive \( 4 \) \( \text{km} \) at \( 30 \) \( \text{km/h} \) and then another \( 4 \) \( \text{km} \) at \( 50 \) \( \text{km/h} \). What is your average speed for the whole \( 8 \) \( \text{km} \) trip?
The graph shows the acceleration as a function of time for an object that is at rest at time \( t = 0 \) \( \text{s} \). The distance traveled by the object between \( 0 \) and \( 2 \) \( \text{s} \) is most nearly
An ice sled powered by a rocket engine starts from rest on a large frozen lake and accelerates at \( +13.0 \, \text{m/s}^2 \). At \( t_1 \), the rocket engine is shut down and the sled moves with constant velocity \( v \) until \( t_2 \). The total distance traveled by the sled is \( 5.30 \times 10^3 \, \text{m} \) and the total time is \( 90.0 \, \text{s} \).
An object undergoes constant acceleration. Starting from rest, the object travels \( 5 \, \text{m} \) in the first second. Then it travels \( 15 \, \text{m} \) in the next second. What additional distance will be covered in the third second?
\(23.5\,\text{m/s}\)
\(28\,\text{m}\)
\(0.96\,\text{s}\)
\(4.8\,\text{s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.