0 attempts
0% avg
UBQ Credits
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_{x}^{2}=v_{i}^{2}+2(-g)\Delta x\] | Use the kinematic relation \(v_{x}^{2}=v_{i}^{2}+2a\Delta x\) with upward positive (so \(a=-g\)). \(v_{x}=14\,\text{m/s}\) at the window, \(\Delta x=18\,\text{m}\). |
| 2 | \[v_{i}^{2}=v_{x}^{2}+2g\Delta x\] | Algebraically solve for \(v_{i}^{2}\). |
| 3 | \[v_{i}^{2}=14^{2}+2(9.8)(18)=196+352.8=548.8\] | Substitute the numerical values. |
| 4 | \[\boxed{v_{i}=23.43\,\text{m/s}}\] | Take the square root to obtain the initial speed. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[0=v_{i}^{2}+2(-g)\Delta x_{\text{max}}\] | At the peak, the final velocity is zero, so set \(v_{x}=0\). |
| 2 | \[\Delta x_{\text{max}}=\frac{v_{i}^{2}}{2g}\] | Re-arrange for the upward displacement from the street. |
| 3 | \[\Delta x_{\text{max}}=\frac{548.8}{19.6}=28\,\text{m}\] | Insert \(v_{i}^{2}=548.8\) and \(g=9.8\,\text{m/s}^{2}\). |
| 4 | \[\boxed{28\,\text{m}}\] | The ball rises 28 m above the street. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_{x}=v_{i}-g t_{1}\] | Use \(v_{x}=v_{i}+at\) with \(a=-g\) to relate velocities and time. |
| 2 | \[t_{1}=\frac{v_{i}-v_{x}}{g}\] | Solve for \(t_{1}\), the interval from the throw to passing the window upward. |
| 3 | \[t_{1}=\frac{23.5-14}{9.8}=0.964\,\text{s}\] | Insert the numerical values. |
| 4 | \[\boxed{0.96\,\text{s}}\] | The ball was thrown roughly one second before being seen at the window. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[T_{\text{total}}=\frac{2v_{i}}{g}\] | For motion that starts and ends at the same height, total flight time is twice the time to the peak, \(v_{i}/g\). |
| 2 | \[T_{\text{total}}=\frac{2(23.5)}{9.8}=4.79\,\text{s}\] | Insert \(v_{i}=23.5\,\text{m/s}\) and \(g=9.8\,\text{m/s}^{2}\). |
| 3 | \[t_{\text{after window}}=T_{\text{total}}-t_{1}=4.79-0.96=3.83\,\text{s}\] | Subtract the elapsed time before passing the window to find the interval after it. |
| 4 | \[\boxed{4.8\,\text{s}\;\text{(total from throw)}}\] | The ball returns to the street 4.8 s after being thrown, i.e., about 3.8 s after passing the window. |
Just ask: "Help me solve this problem."
A tennis ball is thrown straight up with an initial speed of \( 22.5 \, \text{m/s} \). It is caught at the same distance above ground.
A 135.0 N force is applied to a 30.0 kg box at 42 degree angle to the horizontal. If the force of friction is 85.0, what is the net force and acceleration? If the object starts from rest, how far has it traveled in 3.3 sec?
A baseball is tossed from street level by a student straight up at a speed of \(25.3 \text{ m/s}\). After reaching maximum height, it is caught by another student on the roof of a building, \(17.4 \text{ m}\) above the street. How long did this take?
A car travels east at a steady \( 30 \) \( \text{m/s} \) for \( 5 \) \( \text{s} \). What is its acceleration during this motion?
An object is dropped from the top of a 45 m tall building
\(23.43\,\text{m/s}\)
\(28\,\text{m}\)
\(0.96\,\text{s}\)
\(4.8\,\text{s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?