0 attempts
0% avg
UBQ Credits
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_{ix}=v_i\cos 30^{\circ},\;v_{iy}=v_i\sin 30^{\circ}\] | Resolve the initial speed \(v_i\) into horizontal and vertical components using the given launch angle \(30^{\circ}\). |
| 2 | \[t_1=\frac{40}{v_{ix}}\] | Time \(t_1\) to reach the wall is horizontal distance \(\Delta x_1=40\,\text{m}\) divided by horizontal speed \(v_{ix}\). |
| 3 | \[v_{wy}=v_{iy}-gt_1\] | Vertical speed at impact \(v_{wy}\) equals initial vertical speed minus gravitational drop over time \(t_1\). |
| 4 | \[y_w=v_{iy}t_1-\tfrac12gt_1^{2}\] | Vertical displacement gives the height \(y_w\) at which the projectile meets the wall. |
| 5 | \[t_2=\frac{55}{v_{ix}}\] | After the bounce the ball travels back \(40+15=55\,\text{m}\); horizontal speed magnitude is still \(v_{ix}\). |
| 6 | \[0=y_w+v_{wy}t_2-\tfrac12gt_2^{2}\] | Starting from height \(y_w\) with vertical speed \(v_{wy}\), it falls to ground (height 0) in time \(t_2\). |
| 7 | \[v_{ix}=\tfrac{\sqrt3}{2}v_i,\;v_{iy}=\tfrac12v_i\] | Insert the numeric cosine and sine of \(30^{\circ}\). |
| 8 | \[t_1=\frac{80}{\sqrt3\,v_i}\] | Substitute \(v_{ix}=\tfrac{\sqrt3}{2}v_i\) into the expression for \(t_1\). |
| 9 | \[y_w=\frac{40}{\sqrt3}-\frac{3200g}{3v_i^{2}}\] | Insert \(t_1\) from Step 8 into the height formula of Step 4 and simplify. |
| 10 | \[v_{wy}=\frac12v_i-\frac{80g}{\sqrt3\,v_i}\] | Substitute \(t_1\) into Step 3 for the vertical speed at the wall. |
| 11 | \[t_2=\frac{110}{\sqrt3\,v_i}\] | Use \(v_{ix}=\tfrac{\sqrt3}{2}v_i\) in the expression for \(t_2\). |
| 12 | \[0=\frac{95}{\sqrt3}-\frac{18050g}{3v_i^{2}}\] | Insert \(y_w,\;v_{wy},\;t_2\) into the vertical motion equation of Step 6 and combine like terms. |
| 13 | \[v_i^{2}=\frac{190g\sqrt3}{3}\] | Solve the algebraic equation of Step 12 for the square of the launch speed. |
| 14 | \[y_w=\frac{440}{19\sqrt3}\;\text{m}\] | Substitute \(v_i^{2}\) from Step 13 back into the height expression of Step 9. |
| 15 | \[\boxed{y_w\approx13.4\,\text{m}}\] | Numerical evaluation with \(g=9.8\,\text{m/s}^2\) gives the impact height on the wall. |
Just ask: "Help me solve this problem."
A javelin thrower, of height \( 1.8 \) \( \text{m} \), throws a javelin with initial velocity of \( 26 \) \( \text{m s}^{-1} \) at \( 38^{\circ} \) to the horizontal. Calculate the time taken for the javelin to reach the ground from its maximum height. Give your answer in seconds and to an appropriate number of significant figures.
A cylindrical tank of water (height \( H \)) is punctured at a height \( h \) above the bottom. How far from the base of the tank will the water stream land (in terms of \( h \) and \( H \))? What must the value of \( h \) be such that the distance at which the stream lands will be equal to \( H \)?

A ball of mass \( 0.5 \, \text{kg} \), initially at rest, is kicked directly toward a fence from a point \( 32 \, \text{m} \) away, as shown above. The velocity of the ball as it leaves the kicker’s foot is \( 20 \, \text{m/s} \) at an angle of \( 37^\circ \) above the horizontal. The top of the fence is \( 2.5 \, \text{m} \) high. The ball hits nothing while in flight and air resistance is negligible.
A rock is thrown from the top of a \( 15 \) \( \text{m} \) building at an unknown angle and speed. It hits a target on the ground \( 35 \) \( \text{m} \) away horizontally \( 3 \) \( \text{s} \) after launch. What was the rock’s launch angle?
A ball is shot from the top of a building with an initial velocity of \( 18 \) \( \text{m/s} \) at an angle \( \theta = 42^\circ \) above the horizontal.
\(13.4\,\text{m}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?