0 attempts
0% avg
UBQ Credits
Derivation or Formula | Reasoning |
---|---|
\[\vec{F}_{\text{horizontal}} = 0\] | On the frictionless bed, the box experiences no horizontal contact force; gravity and the normal act vertically, so their horizontal components are zero. |
\[\Sigma \vec{F}_x = 0 \Rightarrow m\vec{a}_{\text{box}} = 0\] | From Newton’s second law, zero net horizontal force implies the horizontal acceleration of the box is zero. |
\[\vec{a}_{\text{box, ground}} = 0\] | Thus the box maintains its initial horizontal velocity, which is zero relative to the ground. |
\[\vec{v}_{\text{box, ground}} = \text{constant}\] | The box remains essentially “in place” while the truck accelerates forward underneath it, making the box appear to slide toward the rear of the truck bed. |
\[\text{Truck rear reaches box} \Rightarrow \text{box leaves bed}\] | When the truck’s rear edge reaches the stationary box, the box loses support and then falls straight downward under gravity. |
Derivation or Formula | Reasoning |
---|---|
\[\vec{a}_t = \text{truck’s forward acceleration}\] | Chris is in a non-inertial frame accelerating forward with the truck. |
\[\vec{F}_{\text{pseudo}} = -m\vec{a}_t\] | To apply Newton’s laws in the accelerating frame, Chris must introduce a backward inertial (pseudo) force of magnitude \(m a_t\) on every mass, including the box. |
\[\Sigma \vec{F}’_x = \vec{F}_{\text{pseudo}}\] | With no real horizontal forces, the only horizontal force in Chris’s frame is the pseudo force. |
\[m\vec{a}’ = -m\vec{a}_t\] | Applying Newton’s second law in the truck frame (primed quantities) gives the box a backward acceleration. |
\[\vec{a}’_{\text{box, truck}} = -\vec{a}_t\] | Chris therefore observes the box accelerate toward the rear of the truck with magnitude equal to the truck’s forward acceleration. Once it reaches the edge, it appears to “fly off” and then fall. |
Just ask: "Help me solve this problem."
A spring with a spring constant of \( 600. \) \( \text{N/m} \) is used for a scale to weigh fish. What is the mass of a fish that would stretch the spring by \( 7.5 \) \( \text{cm} \) from its normal length?
Two identical satellites are placed in orbit of two different planets. Satellite \(A\) orbits Mars, and Satellite \(B\) orbits Jupiter. The orbital speeds of each satellite are the same. Which satellite has a greater orbital radius?
Two masses, \( m_1 \) and \( m_2 \), are connected by a cord and arranged as shown in the diagram, with \( m_1 \) sliding along a frictionless surface and \( m_2 \) hanging from a light, frictionless pulley. What would be the mass of the falling mass, \( m_2 \), if both the sliding mass, \( m_1 \), and the tension, \( T \), in the cord were known?
A \(0.5 \, \text{mm}\) wire made of carbon and manganese can just barely support the weight of a \(70.0 \, \text{kg}\) person that is holding on vertically. Suppose this wire is used to lift a \(45.0 \, \text{kg}\) load. What maximum vertical acceleration can be achieved without breaking the wire?
A student is watching their hockey puck slide up and down an incline. They give the puck a quick push along a frictionless table, and it slides up a \( 30^\circ \) rough incline (\( \mu_k = 0.4 \)) of distance \( d \), with an initial speed of \( 5 \) \( \text{m/s} \), and then it slides back down.
Mary: The box remains essentially “in place” while the truck accelerates forward underneath it, making the box appear to slide toward the rear of the truck bed. When the truck’s rear edge reaches the stationary box, the box loses support and then falls straight downward under gravity.
Chris: Observes the box accelerate toward the rear of the truck with magnitude equal to the truck’s forward acceleration. Once it reaches the edge, it appears to “fly off” and then fall.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?