0 attempts
0% avg
UBQ Credits
Part a: Calculate the acceleration of the system
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] F_{\text{net,A}} = m_A \cdot a [/katex] | Net force on mass A equals mass times acceleration. |
2 | [katex] F_{\text{net,B}} = m_B \cdot a [/katex] | Net force on mass B equals mass times acceleration. |
3 | [katex] F_{\text{net,A}} = T – m_A \cdot g [/katex] | Tension upwards minus weight of A downwards. |
4 | [katex] F_{\text{net,B}} = m_B \cdot g – T [/katex] | Weight of B downwards minus tension upwards. |
5 | [katex] m_A \cdot a = T – m_A \cdot g [/katex] | Substitute step 1 into step 3. |
6 | [katex] m_B \cdot a = m_B \cdot g – T [/katex] | Substitute step 2 into step 4. |
7 | [katex] m_A \cdot a + m_B \cdot a = m_B \cdot g – m_A \cdot g [/katex] | Add step 5 and step 6 equations. |
8 | [katex] a = \frac{(m_B – m_A) \cdot g}{m_A + m_B} [/katex] | Solve for acceleration a. |
Use the given number from the problem.
Step | Formula Derivation | Reasoning |
---|---|---|
9 | [katex] a = \frac{(2.4 – 3.2) \cdot 9.8}{3.2 + 2.4} [/katex] | Plug in known values. |
10 | [katex] a = \frac{-0.8 \cdot 9.8}{5.6} [/katex] | Simplify the numerator and denominator. |
11 | [katex] a = -1.4 , \text{m/s}^2 [/katex] | Calculate the acceleration. |
[katex] \boxed{a = -1.4 , \text{m/s}^2} [/katex] Negative sign indicates downward direction.
Part b: Calculate the tension in the string
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] T = m_A \cdot (g + a) [/katex] | Tension equals mass A times (gravity plus acceleration). |
Using the previously calculated acceleration:
Step | Formula Derivation | Reasoning |
---|---|---|
2 | [katex] T = 3.2 \cdot (9.8 – 1.4) [/katex] | Plug in known values for mass and acceleration |
3 | [katex] T = 3.2 \cdot 8.4 [/katex] | Simplify the terms in the parentheses. |
4 | [katex] T = 26.88 , \text{N} [/katex] | Calculate the tension. |
[katex] \boxed{T = 26.88 , \text{N}} [/katex]
Part c: Calculate the final speed of mass A before it hits the ground
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] v = \sqrt{2 \cdot} [/katex] | a |
2 | [katex] v = \sqrt{2 \cdot 1.4 \cdot 0.5} [/katex] | Plug in the magnitude of a and s = 0.5m. |
3 | [katex] v = \sqrt{1.4} [/katex] | Calculate the expression under the square root. |
4 | [katex] v = 1.18 , \text{m/s} [/katex] | Find the square root to get the final velocity. |
[katex] \boxed{v = 1.18 , \text{m/s}} [/katex]
Just ask: "Help me solve this problem."
A 1000 kg car is traveling east at 20m/s when it collides perfectly inelastically with a northbound 2000 kg car traveling at 15m/s. If the coefficient of kinetic friction is 0.9, how far, and at what angle do the two cars skid before coming to a stop?
Two blocks made of different materials, connected by a thin cord, slide down a plane ramp inclined at an angle [katex] \theta [/katex] to the horizontal. If the coefficients of friction are µA = .2 and µB = .3 and if mA = mB = 5.0 kg determine:
A sled moves with constant speed down a sloped hill. The angle of the hill with respect to the horizontal is 10.0°. What is the coefficient of kinetic friction between the sled and the hill’s surface?
The alarm at a fire station rings and a 79.34-kg fireman, starting from rest, slides down a pole to the floor below (a distance of 4.20 m). Just before landing, his speed is 1.36 m/s. What is the magnitude of the kinetic frictional force exerted on the fireman as he slides down the pole?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.