0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \( x = v_x t \) | Determine the time \( t \) it takes for the ball to reach the catcher by using the formula for horizontal motion \( x \) where \( v_x \) is the horizontal velocity and \( x \) is the horizontal distance. |
| 2 | \( t = \frac{x}{v_x} \) | Rearrange the equation to solve for \( t \). The time \( t \) is the distance \( x \) divided by the horizontal velocity \( v_x \). |
| 3 | \( t = \frac{17.0 \, \text{m}}{41.0 \, \text{m/s}} \) | Substitute the given values into the equation. The horizontal distance \( x \) is \( 17.0 \, \text{m} \) and the horizontal velocity \( v_x \) is \( 41.0 \, \text{m/s} \). |
| 4 | \( t \approx 0.4146 \, \text{s} \) | Calculate the value of \( t \). The time it takes for the ball to reach the catcher is approximately \( 0.4146 \, \text{s} \). |
| 5 | \( \Delta y = \frac{1}{2} g t^2 \) | Determine the vertical drop \( \Delta y \) using the formula for vertical motion under gravity, where \( g \) is the acceleration due to gravity (\( 9.8 \, \text{m/s}^2 \)). |
| 6 | \( \Delta y = \frac{1}{2} \cdot 9.8 \, \text{m/s}^2 \cdot (0.4146 \, \text{s})^2 \) | Substitute the known values into the equation. Use \( g = 9.8 \, \text{m/s}^2 \) and \( t \approx 0.4146 \, \text{s} \). |
| 7 | \( \Delta y \approx 0.84 \, \text{m} \) | Calculate the value of \( \Delta y \). The vertical drop is approximately \( 0.841 \, \text{m} \). |
| 8 | \( \Delta y \approx 0.84 \, \text{m} \) | The amount the baseball drops by the time it reaches the catcher is approximately \( 0.841 \, \text{m} \). |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
Suppose the water at the top of Niagara Falls has a horizontal speed of \( 2.7 \, \text{m/s} \) just before it cascades over the edge of the falls. At what vertical distance below the edge does the velocity vector of the water point downward at a \( 75^\circ \) angle below the horizontal?
A cat chases a mouse across a \(1.0 \, \text{m}\) high table. The mouse steps out of the way, and the cat slides off the table and strikes the floor \(2.2 \, \text{m}\) from the edge of the table. When the cat slid off the table, what was its speed?
A rocket-powered hockey puck has a thrust of \(4.40 \, \text{N}\) and a total mass of \(1.00 \, \text{kg}\). It is released from rest on a frictionless table, \(2.10 \, \text{m}\) from the edge of a \(2.10 \, \text{m}\) drop. The front of the rocket is pointed directly toward the edge. Assuming that the thrust of the rocket is present for the entire time of travel, how far does the puck land from the base of the table?
A projectile is launched at \( 25 \) \( \text{m/s} \) at an angle of \( 45^\circ \). It lands on a slope \( 5 \) \( \text{m} \) below the launch height. On landing, it rebounds vertically with \( 80\% \) of its speed and falls straight down from there. Find the total time from launch to final impact at the base of the slope.
A officer fires a pistol horizontally toward a target \(120 \,\text{m}\) at a velocity of \(200 \, \text{m/s}\). If the officer aimed directly at the bull’s eye
A soccer ball with an initial height of \(1.5 \, \text{m}\) above the ground is launched at an angle of \(30^\circ\) above the horizontal. The soccer ball travels a horizontal distance of \(45 \, \text{m}\) to a \(9.0 \, \text{m}\) high castle wall, and passes over \(3.20 \, \text{m}\) above the highest point of the wall. Assume air resistance is negligible.
Two balls are thrown off a building with the same speed, one straight up and one at a 45° angle. Which statement is true if air resistance can be ignored?
A projectile is fired with an initial speed of \( 36.6 \) \( \text{m/s} \) at an angle of \( 42.2^\circ \) above the horizontal on a long flat firing range.
A projectile is launched at angle \( \theta \) to the horizontal, with velocity \( v \), maximum vertical displacement \( s \), and angle \( \theta \) between \( 0^{\circ} \) and \( 45^{\circ} \). What will the maximum vertical displacement be if the projectile is now launched at an angle of \( 2 \theta \) from the horizontal with velocity \( v \)?

A ball of mass \( 0.5 \, \text{kg} \), initially at rest, is kicked directly toward a fence from a point \( 32 \, \text{m} \) away, as shown above. The velocity of the ball as it leaves the kicker’s foot is \( 20 \, \text{m/s} \) at an angle of \( 37^\circ \) above the horizontal. The top of the fence is \( 2.5 \, \text{m} \) high. The ball hits nothing while in flight and air resistance is negligible.
0.84 m
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?