0 attempts
0% avg
UBQ Credits
| Derivation / Formula | Reasoning |
|---|---|
| \[x(t) = v_i \cos\theta\, t\] | Horizontal motion is uniform (no horizontal acceleration), so position grows linearly with constant speed \(v_i\cos\theta\). |
| \[y(t) = v_i \sin\theta \, t – \tfrac{1}{2} g t^2\] | Vertical motion has initial upward speed \(v_i\sin\theta\) and constant downward acceleration \(g\), giving a parabola. |
| \[R=\frac{v_i^2\sin 2\theta}{g}\] | Level-ground range formula (derive by eliminating \(t_f\) from \(x=v_i\cos\theta\,t_f\) and \(0=v_i\sin\theta\,t_f-\tfrac{1}{2}gt_f^2\)). |
| \[\sin 2\theta=\frac{Rg}{v_i^2}=\frac{35\cdot 9.8}{20^2}=0.8575\] | Numerically \(2\theta\approx 59.0^\circ\) or \(121.0^\circ\), so \(\theta\approx 29.5^\circ\) (low) or \(\theta\approx 60.5^\circ\) (high). |
| \[h_{\max}=\frac{(v_i\sin\theta)^2}{2g}\] | Peak height test selects the physically relevant branch for \(y=5\,\text{m}\). |
| \[\begin{aligned} \theta&\approx 29.5^\circ:& h_{\max}&=\frac{(20\sin29.5^\circ)^2}{2\cdot 9.8}\approx 4.95\,\text{m}<5\\ \theta&\approx 60.5^\circ:& h_{\max}&=\frac{(20\sin60.5^\circ)^2}{2\cdot 9.8}\approx 15.46\,\text{m}>5 \end{aligned}\] | The low arc never reaches \(5\,\text{m}\); only the high arc can cross \(y=5\,\text{m}\) twice (upward and downward). |
| \[t=\frac{x}{v_i\cos\theta}\] | From \(x(t)=v_i\cos\theta\,t\), solve for time at a given horizontal position. |
| \[y(x)=v_i\sin\theta\Big(\frac{x}{v_i\cos\theta}\Big)-\frac{1}{2}g\Big(\frac{x}{v_i\cos\theta}\Big)^2\] | Substitute \(t\) into \(y(t)\) to express height directly in terms of \(x\). |
| \[y(x)=x\tan\theta-\frac{g\,x^2}{2v_i^{2}\cos^{2}\theta}\] | Algebraic simplification: \(\tan\theta=\frac{\sin\theta}{\cos\theta}\). |
| \[5=x\tan\theta-\frac{g\,x^2}{2v_i^{2}\cos^{2}\theta}\] | Impose the target height \(y=5\,\text{m}\) on the high-angle trajectory. |
| \[-\underbrace{\frac{g}{2v_i^{2}\cos^{2}\theta}}_{\displaystyle A}\,x^2+\underbrace{\tan\theta}_{\displaystyle B}\,x-\underbrace{5}_{\displaystyle C}=0\] | Identify quadratic coefficients \(a=-A,\; b=B,\; c=-5\). This makes the upcoming plug-in transparent. |
| \[\cos\theta\approx 0.4924,\quad \tan\theta\approx 1.7675,\quad A=\frac{9.8}{2\cdot 20^2\cos^2\theta}\approx 0.05052\] | Using \(\theta\approx 60.5^\circ\). Thus the quadratic is \(-0.05052\,x^2+1.7675\,x-5=0\). |
| \[\Delta=b^2-4ac=1.7675^2-4(-0.05052)(-5)\approx 2.114>0\] | Positive discriminant ⇒ two distinct horizontal positions reach \(y=5\,\text{m}\). |
| \[x=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-1.7675\pm \sqrt{2.114}}{2(-0.05052)}\] | Quadratic formula with \(a=-0.05052,\; b=1.7675,\; c=-5\). |
| \[x\approx 3.10\,\text{m}\quad\text{or}\quad x\approx 31.88\,\text{m}\] | Two crossings of the \(5\,\text{m}\) level: once ascending, once descending. |
| \[\boxed{x=3.1\,\text{m},\;31.9\,\text{m}}\] | Final answer, rounded. |
Just ask: "Help me solve this problem."
A javelin thrower standing at rest holds the center of the javelin behind her head, then accelerates it through a distance of \( 70 \, \text{cm} \) as she throws. She releases the \( 600 \, \text{g} \) javelin \( 2.0 \, \text{m} \) above the ground traveling at an angle of \( 30^\circ \) above the horizontal. In this throw, the javelin hits the ground \( 54 \, \text{m} \) away. Find the following:
A rock is thrown from the top of a \( 15 \) \( \text{m} \) building at an unknown angle and speed. It hits a target on the ground \( 35 \) \( \text{m} \) away horizontally \( 3 \) \( \text{s} \) after launch. What was the rock’s launch angle?
A projectile is launched at an upward angle of \( 30^\circ \) to the horizontal with a speed of \( 30 \) \( \text{m/s} \). How does the horizontal component of its velocity \( 1.0 \) \( \text{s} \) after launch compare with its horizontal component of velocity \( 2.0 \) \( \text{s} \) after launch, ignoring air resistance?
A ball is launched and lands \( 20 \) \( \text{m} \) away below the launch point \( 2.5 \) \( \text{s} \) later. The maximum height reached is \( 8.0 \) \( \text{m} \). What was the original launch velocity?
A skier is accelerating down a \( 30.0^{\circ} \) hill at \( 3.80 \) \( \text{m/s}^2 \).
\(3.1 \text{ m}\)
\(31.9 \text{ m}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?