0 attempts

0% avg

UBQ Credits

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | Determine initial speed (\( v_0 \)) using projectile motion:
Horizontal motion: Vertical motion: Since \( t = \dfrac{\Delta x}{v_0 \cos \theta} \), substitute into vertical equation: |
Set up equations for horizontal and vertical motion to solve for initial speed \( v_0 \). Note that both displacement and acceleration due to gravity point down. |

2 | Simplify and solve for \( v_0 \):
\( -2.0 = 54 \tan 30^\circ – \dfrac{1}{2} \times 9.8 \times \dfrac{54^2}{v_0^2 \cos^2 30^\circ} \) Calculate constants: Substitute values and solve for \( v_0 \): |
Simplified the equation to make \( v_0 \) the subject and substituted known values. |

3 | Calculate \( v_0 \):
\( -2.0 = 54 \times 0.5774 – \dfrac{4.9 \times 54^2}{v_0^2 \times 0.75} \) |
Solved for the initial speed \( v_0 \). |

4 | (a) Use the final speed to find acceleration during the throw:
Use \( v_f^2 = v_i^2 + 2 a s \) |
Calculated acceleration using kinematic equation. |

5 | (b) Find time of flight:
\( t = \dfrac{\Delta x}{v_0 \cos \theta} \) |
Used horizontal motion to calculate total time. |

Just ask: "Help me solve this problem."

- Statistics

Advanced

Mathematical

GQ

A rocket is fired at a speed of 75.0 m/s from ground level, at an angle of 60.0° above the horizontal. The rocket is fired toward an 11.0-m-high wall, which is located 27.0 m away. The rocket attains its launch speed in a negligibly short period of time, after which its engines shut down and the rocket coasts. By how much does the rocket clear the top of the wall?

- Projectiles

Advanced

Mathematical

GQ

A baseball rolls off a 0.70 m high desk and strikes the floor 0.25 m away from the base of the desk. How fast was the ball rolling?

- Projectiles

Advanced

Mathematical

FRQ

One end of a spring is attached to a solid wall while the other end just reaches to the edge of a horizontal, frictionless tabletop, which is a distance [katex] h [/katex] above the floor. A block of mass M is placed against the end of the spring and pushed toward the wall until the spring has been compressed a distance [katex] x [/katex]. The block is released and strikes the floor a horizontal distance [katex] D [/katex] from the edge of the table. Air resistance is negligible.

Derive an expressions for the following quantities only in terms of [katex] M, x, D, h, [/katex] and any constants.

- Energy, Projectiles

Advanced

Mathematical

FRQ

A ball of mass \( 0.5 \, \text{kg} \), initially at rest, is kicked directly toward a fence from a point \( 32 \, \text{m} \) away, as shown above. The velocity of the ball as it leaves the kicker’s foot is \( 20 \, \text{m/s} \) at an angle of \( 37^\circ \) above the horizontal. The top of the fence is \( 2.5 \, \text{m} \) high. The ball hits nothing while in flight and air resistance is negligible.

- Projectiles

Intermediate

Mathematical

GQ

A cat chases a mouse across a 1.0 m high table. The mouse steps out of the way, and the cat slides off the table and strikes the floor 2.2 m from the edge of the table. When the cat slid off the table, what was its speed?

- Projectiles

- \( a \approx 410.4 \) m/s²
- \( t \approx 2.60 \) s

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |

\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |

\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |

\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |

\(v^2 = v_f^2 \,-\, 2a \Delta x\) |

Circular Motion | Energy |
---|---|

\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |

\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |

\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |

\(W = Fd \cos\theta\) |

Momentum | Torque and Rotations |
---|---|

\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |

\(J = \Delta p\) | \(I = \sum mr^2\) |

\(p_i = p_f\) | \(L = I \cdot \omega\) |

Simple Harmonic Motion | Fluids |
---|---|

\(F = -kx\) | \(P = \frac{F}{A}\) |

\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |

\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |

\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |

\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- 1. Some answers may vary by 1% due to rounding.
- Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
- Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
- Bookmark questions you can’t solve to revisit them later
- 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.

Submitting counts as 1 attempt.

Viewing answers or explanations count as a failed attempts.

Phy gives partial credit if needed

MCQs and GQs are are 1 point each. FRQs will state points for each part.

Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.

Understand you mistakes quicker.

Phy automatically provides feedback so you can improve your responses.

10 Free Credits To Get You Started