0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
Initial Information | ||
0 | – Airplane speed: \( v_p = 97.5 \, \text{m/s} \) – Climb angle: \( \theta = 50.0^\circ \) – Altitude at release: \( h = 732 \, \text{m} \) – Acceleration due to gravity: \( g = 9.8 \, \text{m/s}^2 \) |
Gathered all given data for the problem. |
1 | Resolve initial velocity into components:
– Horizontal component: – Vertical component: |
Calculated initial horizontal (\( v_{0x} \)) and vertical (\( v_{0y} \)) velocities of the package. |
2 | Set up the vertical motion equation to find time \( t \):
\( y = y_0 + v_{0y} t – \dfrac{1}{2} g t^2 \) |
Established the equation for vertical motion to solve for time. |
3 | Rearrange the equation into a quadratic form:
\( -\dfrac{1}{2} g t^2 + v_{0y} t + h = 0 \) |
Prepared the quadratic equation to solve for \( t \). |
4 | Calculate the discriminant \( D \):
\( D = b^2 – 4ac \) |
Computed the discriminant to use in the quadratic formula. |
5 | Solve for time \( t \) using the quadratic formula:
\( t = \dfrac{-b \pm \sqrt{D}}{2a} \) |
Found the time of flight \( t \) for the package. |
6 | (a) Calculate the horizontal distance traveled:
\( x = v_{0x} t \) |
Determined the horizontal distance from the release point to impact. |
7 | Calculate the final vertical velocity \( v_y \):
\( v_y = v_{0y} – g t \) |
Computed the vertical component of velocity just before impact. |
8 | Calculate the magnitude of the final velocity \( v \):
\( v = \sqrt{v_{x}^2 + v_{y}^2} \) |
Found the speed of the package just before impact. |
9 | (b) Determine the angle \( \phi \) of the velocity vector:
\( \tan \phi = \dfrac{|v_y|}{v_x} = \dfrac{141.28}{62.73} \approx 2.252 \) |
Calculated the angle of the velocity vector relative to the ground. |
Just ask: "Help me solve this problem."
A plane, 220 meters high, is dropping a supply crate to an island below. It is traveling with a horizontal velocity of 150 m/s. At what horizontal distance must the plane drop the supply crate for it to land on the island? Use [katex] g = 9.81 \, m/s^2[/katex].
Which of the following statements about the acceleration due to gravity is TRUE?
One end of a spring is attached to a solid wall while the other end just reaches to the edge of a horizontal, frictionless tabletop, which is a distance [katex] h [/katex] above the floor. A block of mass M is placed against the end of the spring and pushed toward the wall until the spring has been compressed a distance [katex] x [/katex]. The block is released and strikes the floor a horizontal distance [katex] D [/katex] from the edge of the table. Air resistance is negligible.
Derive an expressions for the following quantities only in terms of [katex] M, x, D, h, [/katex] and any constants.
Suppose the water at the top of Niagara Falls has a horizontal speed of \( 2.7 \, \text{m/s} \) just before it cascades over the edge of the falls. At what vertical distance below the edge does the velocity vector of the water point downward at a \( 75^\circ \) angle below the horizontal?
A baseball is thrown at an angle of 25° relative to the ground at a speed of 23.0 m/s. The ball is caught 42.0 m from the thrower.
(a) \( 1379.29 \, \text{m} \)
(b) \( 66.1^\circ \) below the horizontal.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.