0 attempts
0% avg
UBQ Credits
Explanation of Tidal Forces
Step | Explanation | Reasoning |
---|---|---|
1 | Tidal force depends on the difference in gravitational pull on different parts of Earth. | Tides are caused by the differential gravitational force. |
2 | The Moon is much closer to Earth than the Sun. | Distance greatly affects the gradient of the gravitational field. |
3 | Gravitational force decreases with the square of the distance. | The inverse-square law dictates gravitational attraction. |
4 | Tidal forces are proportional to the inverse cube of the distance. | The gradient of the gravitational field decreases even more steeply. |
5 | The Moon’s proximity means a steeper gravitational gradient across Earth’s diameter. | This causes stronger tidal effects than the Sun, despite its greater overall force. |
6 | The Sun’s influence is more uniform across Earth. | The Sun’s further distance causes a less steep gradient, resulting in weaker tidal forces. |
7 | The combined effect of the Sun and Moon creates spring and neap tides. | When their forces align or oppose, the tides are respectively higher or lower. |
In summary, while the Sun exerts a greater overall gravitational force on Earth, the Moon’s closer proximity results in a greater differential in gravitational pull across the Earth, leading to more significant tidal forces.
Further Understanding: Gravitational Gradient
Step | Explanation | Reasoning |
---|---|---|
1 | Gravitational force follows the inverse-square law. | Gravitational force [katex]F[/katex] is proportional to [katex]\frac{1}{r^2}[/katex], where [katex]r[/katex] is the distance. |
2 | Gravitational gradient is the rate of change of force with distance. | It measures how much the force changes over a small change in distance ([katex]\frac{dF}{dr}[/katex]). |
3 | The gradient is steeper for closer objects. | Due to the inverse-square law, nearby objects (like the Moon) have a more rapidly changing force over a given distance. |
4 | Tidal forces depend on the difference in gravitational force across an object’s diameter. | For Earth, this means the difference in the Moon’s (or Sun’s) pull between the side facing the celestial body and the opposite side. |
5 | The Moon’s gradient has a greater effect than the Sun’s. | Although the Sun exerts a stronger overall force, the change in its force across Earth’s diameter is less than the change in the Moon’s force. |
The gradient is vital in explaining tidal phenomena because it’s not just the strength of the gravitational pull that matters, but how much this pull changes over the distance spanning the Earth. The Moon, being much closer to Earth, exerts a significantly varying force across Earth’s diameter compared to the more uniform force exerted by the distant Sun, leading to stronger tides despite its weaker overall gravitational pull.
Just ask: "Help me solve this problem."
The International Space Station has a mass of 4.2 x105 kg and orbits Earth at a distance of 4.0 x102 km above the surface. Earth has a radius of 6.37 x106 m, and mass of 5.97 x1024 kg. Calculate the following:
A spacecraft somewhere in between the earth and the moon experiences 0 net force acting on it. This is because the earth and the moon pull the spacecraft in equal but opposite directions. Find the distance D away from Earth, such that the spacecraft experiences zero net force. The distance between the Moon and Earth is ~3.844 x 108 m.
NOTE: You may need the mass of the earth and moon. You can find this in the formula table.
While traveling in its elliptical orbit around the Sun, Mars gains speed during the part of the orbit where it is getting closer to the Sun. Which of the following can be used to explain this gain in speed?
A communications satellite orbits the Earth at an altitude of 35,000 km above the Earth’s surface. Take the mass of Earth to be [katex]6 \times 10^{24} \text{ kg}[/katex] the the radius of Earth to be [katex]6.4 \times 10^6 \text{ m}[/katex]. What is the satellite’s velocity?
Two identical satellites are placed in orbit of two different planets. Satellite A orbits Mars, and Satellite B orbits Jupiter. The orbital speeds of each satellite are the same. Which satellite has a greater orbital radius?
The Moon has a greater influence on Earth’s tides than the Sun due to the differential gravitational forces.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.