The gravitational force that the moon exerts on Earth is often cited as the source for the tides we witness. However, the gravitational force the Sun exerts on Earth is over 100 times greater than the force the moon exerts on Earth.
Why is the force from the moon credited for the tides, and not the force from the sun?
The Moon has a greater influence on Earth’s tides than the Sun due to the differential gravitational forces.
Explanation of Tidal Forces
Step | Explanation | Reasoning |
---|---|---|
1 | Tidal force depends on the difference in gravitational pull on different parts of Earth. | Tides are caused by the differential gravitational force. |
2 | The Moon is much closer to Earth than the Sun. | Distance greatly affects the gradient of the gravitational field. |
3 | Gravitational force decreases with the square of the distance. | The inverse-square law dictates gravitational attraction. |
4 | Tidal forces are proportional to the inverse cube of the distance. | The gradient of the gravitational field decreases even more steeply. |
5 | The Moon’s proximity means a steeper gravitational gradient across Earth’s diameter. | This causes stronger tidal effects than the Sun, despite its greater overall force. |
6 | The Sun’s influence is more uniform across Earth. | The Sun’s further distance causes a less steep gradient, resulting in weaker tidal forces. |
7 | The combined effect of the Sun and Moon creates spring and neap tides. | When their forces align or oppose, the tides are respectively higher or lower. |
In summary, while the Sun exerts a greater overall gravitational force on Earth, the Moon’s closer proximity results in a greater differential in gravitational pull across the Earth, leading to more significant tidal forces.
Further Understanding: Gravitational Gradient
Step | Explanation | Reasoning |
---|---|---|
1 | Gravitational force follows the inverse-square law. | Gravitational force F is proportional to \frac{1}{r^2}, where r is the distance. |
2 | Gravitational gradient is the rate of change of force with distance. | It measures how much the force changes over a small change in distance (\frac{dF}{dr}). |
3 | The gradient is steeper for closer objects. | Due to the inverse-square law, nearby objects (like the Moon) have a more rapidly changing force over a given distance. |
4 | Tidal forces depend on the difference in gravitational force across an object’s diameter. | For Earth, this means the difference in the Moon’s (or Sun’s) pull between the side facing the celestial body and the opposite side. |
5 | The Moon’s gradient has a greater effect than the Sun’s. | Although the Sun exerts a stronger overall force, the change in its force across Earth’s diameter is less than the change in the Moon’s force. |
The gradient is vital in explaining tidal phenomena because it’s not just the strength of the gravitational pull that matters, but how much this pull changes over the distance spanning the Earth. The Moon, being much closer to Earth, exerts a significantly varying force across Earth’s diameter compared to the more uniform force exerted by the distant Sun, leading to stronger tides despite its weaker overall gravitational pull.
Two satellites are in circular orbits around Earth. Satellite A has speed vA . Satellite B has an orbital radius nine times that of satellite A. What is the speed of satellite B?
Find the net gravitational force on a 2.0 kg sphere midway between a 4.0 kg sphere and a 7.0 kg sphere that are 1.2 m apart.
The distance from earth to sun is 1.0 AU. The distance from Saturn to sun is 9 AU. Find the period of Saturn’s orbit in years. You can assume that the orbits are circular.
A satellite circling Earth completes each orbit in 132 minutes.
The Earth’s radius is 6.37 x 106 m. What is the radius of a planet that has the same mass as earth but on which the free-fall acceleration is 5.50 m/s2?
A 3300-m-high mountain is located on the equator. How much faster does a climber on top of the mountain move than a surfer at a nearby beach? The earth’s radius is 6400 km and the earth’s mass is 5.97 x 1024.
A 1.5 kg object is located at a distance of 1.7 x106 m from the center of a larger object whose mass is 7.4 x 1022 kg.
Two identical satellites are placed in orbit of two different planets. Satellite A orbits Mars, and Satellite B orbits Jupiter. The orbital speeds of each satellite are the same. Which satellite has a greater orbital radius?
The International Space Station has a mass of 4.2 x105 kg and orbits Earth at a distance of 4.0 x102 km above the surface. Earth has a radius of 6.37 x106 m, and mass of 5.97 x1024 kg. Calculate the following:
Imagine a hypothetical planet that has two moons. Moon #1 is in a circular orbit of radius R and has a mass M.
The Moon has a greater influence on Earth’s tides than the Sun due to the differential gravitational forces.
Home » The gravitational force that the moon exerts on Earth is often cited as the source for the tides we witness. However, the gravitational force the Sun exerts on Earth is over 100 times greater than the force the moon exerts on Earth. Why is the force from the moon credited for the tides, and not the force from the sun?
Advanced Placement® and AP® are trademarks registered by the College Board, which is not affiliated with, and does not endorse, this product.
By continuing, you agree to the updated Terms of Sale, Terms of Use, and Privacy Policy.
What would you like us to add, improve, or change on this page? We listen to all your feedback!
Kinematics | Forces |
---|---|
\Delta x = v_i \cdot t + \frac{1}{2} a \cdot t^2 | F = m \cdot a |
v = v_i + a \cdot t | F_g = \frac{G \cdot m_1 \cdot m_2}{r^2} |
a = \frac{\Delta v}{\Delta t} | f = \mu \cdot N |
R = \frac{v_i^2 \cdot \sin(2\theta)}{g} |
Circular Motion | Energy |
---|---|
F_c = \frac{m \cdot v^2}{r} | KE = \frac{1}{2} m \cdot v^2 |
a_c = \frac{v^2}{r} | PE = m \cdot g \cdot h |
KE_i + PE_i = KE_f + PE_f |
Momentum | Torque and Rotations |
---|---|
p = m \cdot v | \tau = r \cdot F \cdot \sin(\theta) |
J = \Delta p | I = \sum m \cdot r^2 |
p_i = p_f | L = I \cdot \omega |
Simple Harmonic Motion |
---|
F = -k \cdot x |
T = 2\pi \sqrt{\frac{l}{g}} |
T = 2\pi \sqrt{\frac{m}{k}} |
Constant | Description |
---|---|
g | Acceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface |
G | Universal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2 |
\mu_k and \mu_s | Coefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion. |
k | Spring constant, in \text{N/m} |
Variable | SI Unit |
---|---|
s (Displacement) | \text{meters (m)} |
v (Velocity) | \text{meters per second (m/s)} |
a (Acceleration) | \text{meters per second squared (m/s}^2\text{)} |
t (Time) | \text{seconds (s)} |
m (Mass) | \text{kilograms (kg)} |
Variable | Derived SI Unit |
---|---|
F (Force) | \text{newtons (N)} |
E, PE, KE (Energy, Potential Energy, Kinetic Energy) | \text{joules (J)} |
P (Power) | \text{watts (W)} |
p (Momentum) | \text{kilogram meters per second (kg·m/s)} |
\omega (Angular Velocity) | \text{radians per second (rad/s)} |
\tau (Torque) | \text{newton meters (N·m)} |
I (Moment of Inertia) | \text{kilogram meter squared (kg·m}^2\text{)} |
f (Frequency) | \text{hertz (Hz)} |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: \text{5 km}
Use the conversion factors for kilometers to meters and meters to millimeters: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}
Perform the multiplication: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}
Simplify to get the final answer: \boxed{5 \times 10^6 \, \text{mm}}
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | 10^{-12} | 0.000000000001 |
Nano- | n | 10^{-9} | 0.000000001 |
Micro- | µ | 10^{-6} | 0.000001 |
Milli- | m | 10^{-3} | 0.001 |
Centi- | c | 10^{-2} | 0.01 |
Deci- | d | 10^{-1} | 0.1 |
(Base unit) | – | 10^{0} | 1 |
Deca- or Deka- | da | 10^{1} | 10 |
Hecto- | h | 10^{2} | 100 |
Kilo- | k | 10^{3} | 1,000 |
Mega- | M | 10^{6} | 1,000,000 |
Giga- | G | 10^{9} | 1,000,000,000 |
Tera- | T | 10^{12} | 1,000,000,000,000 |