AP Physics Unit

Unit 3 - Circular Motion

Advanced

Proportional Analysis

GQ

The distance from earth to sun is 1.0 AU. The distance from Saturn to sun is 9 AU. Find the period of Saturn’s orbit in years. You can assume that the orbits are circular.

Assuming circular motion and that earths period of orbit around the sun is one year we can make a general equation relating Period and radius of orbit.

Step Formula Derivation Reasoning
1 \frac{mv^2}{r} = \frac{GMm}{r^2} Equating centripetal force to gravitational force for a stable orbit.
2 v = \frac{2\pi r}{T} Expressing orbital velocity in terms of the orbit’s circumference and period.
3 \left(\frac{2\pi r}{T}\right)^2 = \frac{GM}{r^2} Substituting the expression for v into the force equation.
4 \frac{4\pi^2 r^3}{T^2} = GM Rearranging the equation to isolate GM .
5 \frac{R_{\text{Earth}}^3}{T_{\text{Earth}}^2} = \frac{R_{\text{Saturn}}^3}{T_{\text{Saturn}}^2} Recognizing that GM is constant, and applying the formula to both Earth and Saturn.
6 T_{\text{Saturn}} = T_{\text{Earth}} \times \left( \frac{R_{\text{Saturn}}}{R_{\text{Earth}}} \right)^{\frac{3}{2}} Solving for T_{\text{Saturn}} in terms of known quantities.
7 T_{\text{Saturn}} = 365 , \text{days} \times (9)^{\frac{3}{2}} Substituting T_{\text{Earth}} = 365 , \text{days} and R_{\text{Saturn}} = 9 , \text{AU} .
8 T_{\text{Saturn}} \approx 27 , \text{years} Calculating the period of Saturn’s orbit.

This table illustrates the steps taken to determine the orbital period of Saturn, showing how the increase in the radius of Saturn’s orbit by a factor of 9 results in an increase in the orbital period squared, leading to a period of approximately 27 years.

27 years

Check With Phy

Solve. Take a picture. Upload. Phy will grade your working.

Simple Chat Box
Grade or Ask About This General Question

Phy Beta V5 (1.28.24) – Systems Operational.

Topics in this question

Discover how students preformed on this question | Coming Soon

Discussion Threads

Leave a Reply

27 years

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Share Your Feedback.

What went wrong? Found something incorrect? OR just want to tell us to add/improve something on this page? We listen to all your feedback!

You must be signed in to leave feedback

Nerd-Notes.com
KinematicsForces
\Delta x = v_i t + \frac{1}{2} at^2F = ma
v = v_i + atF_g = \frac{G m_1m_2}{r^2}
a = \frac{\Delta v}{\Delta t}f = \mu N
R = \frac{v_i^2 \sin(2\theta)}{g} 
Circular MotionEnergy
F_c = \frac{mv^2}{r}KE = \frac{1}{2} mv^2
a_c = \frac{v^2}{r}PE = mgh
 KE_i + PE_i = KE_f + PE_f
MomentumTorque and Rotations
p = m v\tau = r \cdot F \cdot \sin(\theta)
J = \Delta pI = \sum mr^2
p_i = p_fL = I \cdot \omega
Simple Harmonic Motion
F = -k x
T = 2\pi \sqrt{\frac{l}{g}}
T = 2\pi \sqrt{\frac{m}{k}}
ConstantDescription
gAcceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface
GUniversal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2
\mu_k and \mu_sCoefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion.
kSpring constant, in \text{N/m}
M_E = 5.972 \times 10^{24} , \text{kg} Mass of the Earth
M_M = 7.348 \times 10^{22} , \text{kg} Mass of the Moon
M_M = 1.989 \times 10^{30} , \text{kg} Mass of the Sun
VariableSI Unit
s (Displacement)\text{meters (m)}
v (Velocity)\text{meters per second (m/s)}
a (Acceleration)\text{meters per second squared (m/s}^2\text{)}
t (Time)\text{seconds (s)}
m (Mass)\text{kilograms (kg)}
VariableDerived SI Unit
F (Force)\text{newtons (N)}
E, PE, KE (Energy, Potential Energy, Kinetic Energy)\text{joules (J)}
P (Power)\text{watts (W)}
p (Momentum)\text{kilogram meters per second (kgm/s)}
\omega (Angular Velocity)\text{radians per second (rad/s)}
\tau (Torque)\text{newton meters (Nm)}
I (Moment of Inertia)\text{kilogram meter squared (kgm}^2\text{)}
f (Frequency)\text{hertz (Hz)}

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: \text{5 km}

  2. Use the conversion factors for kilometers to meters and meters to millimeters: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}

  3. Perform the multiplication: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}

  4. Simplify to get the final answer: \boxed{5 \times 10^6 \, \text{mm}}

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

10^{-12}

Nano-

n

10^{-9}

Micro-

µ

10^{-6}

Milli-

m

10^{-3}

Centi-

c

10^{-2}

Deci-

d

10^{-1}

(Base unit)

10^{0}

Deca- or Deka-

da

10^{1}

Hecto-

h

10^{2}

Kilo-

k

10^{3}

Mega-

M

10^{6}

Giga-

G

10^{9}

Tera-

T

10^{12}

  1. Some answers may be slightly off by 1% depending on rounding, etc.
  2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
  3. Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
  4. Bookmark questions that you can’t solve so you can come back to them later. 
  5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

Jason here! Feeling uneasy about your next physics test? I will help boost your grades in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.