0 attempts
0% avg
UBQ Credits
Finding tension in the string
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]\tan(\theta) = \frac{R}{h}[/katex] | The angle [katex]\theta[/katex] is between the string and the vertical axis. [katex]h[/katex] is the vertical distance from the ball to the pivot. |
2 | [katex]h = L \cos(\theta)[/katex] | From the geometry of the cone. |
3 | [katex]\tan(\theta) = \frac{R}{L \cos(\theta)}[/katex] | Substituting the expression for [katex]h[/katex]. |
4 | [katex]\sin(\theta) = \frac{R}{\sqrt{R^2 + h^2}}[/katex] | From the right triangle formed by the string, [katex]h[/katex], and [katex]R[/katex]. |
5 | [katex]F_{T} \sin(\theta) = F_{c}[/katex] | The horizontal component of tension provides the centripetal force ([katex]F_{c}[/katex]). |
6 | [katex]F_{c} = m \frac{v^2}{R}[/katex] | Centripetal force formula. [katex]v[/katex] is the velocity of the ball. |
7 | [katex]F_{T} \cos(\theta) = mg[/katex] | The vertical component of tension balances gravity. |
8 | [katex]F_{T} = \frac{mg}{\cos(\theta)}[/katex] | Isolating [katex]F_{T}[/katex] in the vertical balance. |
9 | [katex]F_{T} = \frac{mg}{\cos(\theta)} = \frac{mg}{\sqrt{1 – \sin^2(\theta)}}[/katex] | Using [katex]\cos(\theta) = \sqrt{1 – \sin^2(\theta)}[/katex]. |
10 | [katex]F_{T} = \frac{mg}{\sqrt{1 – \left(\frac{R}{\sqrt{R^2 + h^2}}\right)^2}}[/katex] | Substituting [katex]\sin(\theta)[/katex]. |
11 | [katex]\boxed{F_{T} = \frac{mg}{\sqrt{1 – \frac{R^2}{R^2 + L^2 \cos^2(\theta)}}}}[/katex] | Final expression for tension, substituting [katex]h = L \cos(\theta)[/katex]. |
Finding period of the pendulum
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]F_{c} = m \frac{v^2}{R}[/katex] | Centripetal force formula. |
2 | [katex]F_{T} \sin(\theta) = m \frac{v^2}{R}[/katex] | The horizontal component of tension provides the centripetal force. |
3 | [katex]v = R \omega[/katex] | Relationship between linear velocity and angular velocity ([katex]\omega[/katex]). |
4 | [katex]m \frac{(R \omega)^2}{R} = F_{T} \sin(\theta)[/katex] | Substituting [katex]v[/katex] with [katex]R \omega[/katex]. |
5 | [katex]\omega^2 = \frac{F_{T} \sin(\theta)}{mR}[/katex] | Isolating [katex]\omega^2[/katex]. |
6 | [katex]\omega = \sqrt{\frac{g}{R \tan(\theta)}}[/katex] | Using [katex]F_{T} \sin(\theta) = mg \sin(\theta)[/katex] and simplifying. |
7 | [katex]T = \frac{2\pi}{\omega}[/katex] | Period ([katex]T |
Just ask: "Help me solve this problem."
A car is safely negotiating an unbanked circular turn at a speed of 17 m/s on dry road. However, a long wet patch in the road appears and decreases the maximum static frictional force to one-fifth of its dry-road value. If the car is to continue safely around the curve, by what factor would the it need to change the original velocity?
A rock is whirled on the end of a string in a horizontal circle of radius R with a constant period T. If the radius of the circle is reduced to R/3, while the period remains T, what happens to the centripetal acceleration (ac) of the rock?
A roller coaster car crosses the top of a circular loop-the-loop at twice the critical speed. What is the ratio of the normal force to the gravitational force?
A 250 newton centripetal force acts on a car moving at a constant speed in a horizontal circle. If the same force is applied, but the radius is made smaller, what happens to the speed v and the frequency f of the car?
The distance from earth to sun is 1.0 AU. The distance from Saturn to sun is 9 AU. Find the period of Saturn’s orbit in years. You can assume that the orbits are circular.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.