0 attempts
0% avg
UBQ Credits
1. Gravitational Force Between Earth and the ISS
| Step | Formula Derivation | Reasoning |
|---|---|---|
| 1 | [katex]F = G \frac{M_{\text{earth}} M_{\text{ISS}}}{r^2}[/katex] | Newton’s law of universal gravitation. |
| 2 | [katex]r = R_{\text{earth}} + h_{\text{ISS}}[/katex] | Distance [katex]r[/katex] is Earth’s radius plus ISS’s altitude. |
2. Orbital Speed of the ISS
| Step | Formula Derivation | Reasoning |
|---|---|---|
| 1 | [katex]F_{\text{gravity}} = \frac{GM_{\text{earth}}M_{\text{ISS}}}{r^2}[/katex] | Gravitational force between Earth and ISS. |
| 2 | [katex]F_{\text{centripetal}} = \frac{M_{\text{ISS}}v^2}{r}[/katex] | Centripetal force required for circular orbit. |
| 3 | [katex]F_{\text{gravity}} = F_{\text{centripetal}}[/katex] | For a stable orbit, gravitational force equals centripetal force. |
| 4 | [katex]\frac{GM_{\text{earth}}M_{\text{ISS}}}{r^2} = \frac{M_{\text{ISS}}v^2}{r}[/katex] | Equating the two forces. |
| 5 | [katex]GM_{\text{earth}} = rv^2[/katex] | Cancelling [katex]M_{\text{ISS}}[/katex] and rearranging. |
| 6 | [katex]v = \sqrt{\frac{GM_{\text{earth}}}{r}}[/katex] | Solving for orbital velocity [katex]v[/katex]. Note that r is the total distance from the center of earth to ISS. |
3. Orbital Period of the ISS
| Step | Formula Derivation | Reasoning |
|---|---|---|
| 1 | [katex]T = \frac{\text{Circumference of Orbit}}{\text{Orbital Speed}}[/katex] | Orbital period [katex]T[/katex] is the time to complete one orbit. |
| 2 | [katex]\text{Circumference} = 2\pi r[/katex] | Circumference formula for a circle. |
| 3 | [katex]T = \frac{2\pi r}{v}[/katex] | Substituting the circumference and orbital speed [katex]v[/katex]. |
| 4 | [katex]T_{\text{minutes}} = \frac{T}{60}[/katex] | Converting period from seconds to minutes. |
Let’s perform the calculations using the given values.
The calculations yield the following results:
Just ask: "Help me solve this problem."
A \(1.5 \, \text{kg}\) object is located at a distance of \(1.7 \times 10^{6} \, \text{m}\) from the center of a larger object whose mass is \(7.4 \times 10^{22} \, \text{kg}\).

A roller coaster ride at an amusement park lifts a car of mass \( 700 \, \text{kg} \) to point \( A \) at a height of \( 90 \, \text{m} \) above the lowest point on the track, as shown above. The car starts from rest at \( A \), rolls with negligible friction down the incline and follows the track around a loop of radius \( 20 \, \text{m} \). Point \( B \), the highest point on the loop, is at a height of \( 50 \, \text{m} \) above the lowest point on the track.
The gravitational force that the Moon exerts on Earth is often cited as the source of the tides we witness. However, the gravitational force the Sun exerts on Earth is over \(100\) times greater than the force the Moon exerts on Earth.
Why is the force from the Moon credited for the tides, and not the force from the Sun?
Which pulls harder gravitationally, the Earth on the Moon, or the Moon on the Earth? Which accelerates more?
Young David experimented with slings before tackling Goliath. He found that he could develop an angular speed of \( 8.0 \) \( \text{rev/s} \) in a sling \( 0.60 \) \( \text{m} \) long. If he increased the length to \( 0.90 \) \( \text{m} \), he could revolve the sling only \( 6.0 \) times per second.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?