0 attempts
0% avg
UBQ Credits
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[ T\cos\theta = mg \] | This equation comes from vertical force equilibrium; the vertical component of the tension \(T\) must balance the gravitational force \(mg\). |
2 | \[ T = \frac{mg}{\cos\theta} \] | We solve the vertical equilibrium equation for \(T\) by dividing both sides by \(\cos\theta\). |
3 | \[ \sin\theta = \frac{R}{L} \quad \text{and} \quad \cos\theta = \sqrt{1-\frac{R^2}{L^2}} \] | Since the ball moves in a horizontal circle, the radius is given by \(R = L\sin\theta\). We then use the Pythagorean identity \(\cos\theta = \sqrt{1-\sin^2\theta}\) to express \(\cos\theta\) in terms of \(R\) and \(L\). |
4 | \[ \boxed{T = \frac{mg}{\sqrt{1-\frac{R^2}{L^2}}}} \] | Substitute the expression for \(\cos\theta\) into the formula for \(T\) to obtain the tension in terms of \(m\), \(g\), \(R\), and \(L\). |
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[ T\sin\theta = m\frac{v^2}{R} \] | This equation represents the horizontal force balance. The horizontal component of the tension \(T\) provides the centripetal force \(m\frac{v^2}{R}\) required for circular motion. |
2 | \[ v^2 = \frac{T R \sin\theta}{m} \] | We solve the horizontal force equation for \(v^2\) by isolating it on one side. |
3 | \[ v^2 = \frac{(mg/\cos\theta) R \sin\theta}{m} = gR\tan\theta \] | Substitute \(T = \frac{mg}{\cos\theta}\) from the vertical balance and simplify; notice that \(m\) cancels out. |
4 | \[ v = \sqrt{gR\tan\theta} \] | Take the square root to find the speed \(v\) of the ball. |
5 | \[ P = \frac{2\pi R}{v} \] | The period \(P\) is found by dividing the circumference of the circle \(2\pi R\) by the speed \(v\) of the ball. |
6 | \[ P = \frac{2\pi R}{\sqrt{gR\tan\theta}} = 2\pi \sqrt{\frac{R}{gR\tan\theta}} = 2\pi \sqrt{\frac{1}{g\tan\theta}} \] | Simplify the expression by canceling \(R\) under the square root. |
7 | \[ \tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{R/L}{\sqrt{1-\frac{R^2}{L^2}}} = \frac{R}{\sqrt{L^2-R^2}} \] | Express \(\tan\theta\) in terms of \(R\) and \(L\) using \(\sin\theta = \frac{R}{L}\) and \(\cos\theta = \sqrt{1-\frac{R^2}{L^2}}\). |
8 | \[ P = 2\pi \sqrt{\frac{1}{g\left(\frac{R}{\sqrt{L^2-R^2}}\right)}} = 2\pi \sqrt{\frac{\sqrt{L^2-R^2}}{gR}} \] | Substitute the expression for \(\tan\theta\) into the period formula. |
9 | \[ P = \frac{2\pi R}{\sqrt{gR\tan\theta}} = 2\pi\sqrt{\frac{L\cos\theta}{g}} \] | An alternative derivation: using \(R = L\sin\theta\), one can show that \(P = 2\pi\sqrt{\frac{L\cos\theta}{g}}\). Since \(\cos\theta = \sqrt{1-\frac{R^2}{L^2}}\), this gives the same result. |
10 | \[ \boxed{P = 2\pi \sqrt{\frac{L\sqrt{1-\frac{R^2}{L^2}}}{g}}} \] | This is the final expression for the period \(P\) expressed in terms of \(L\), \(R\), and \(g\). |
Just ask: "Help me solve this problem."
An object moves at constant speed in a circular path of radius \( r \) at a rate of \( 1 \) revolution per second. What is its acceleration in terms of \(r\)?
A curve with a radius of \( 125 \) \( \text{m} \) is properly banked for a car traveling \( 40 \) \( \text{m/s} \). What must be the coefficient of static friction \( (\mu_s) \) for a car not to skid on the same curve when traveling at \( 53 \) \( \text{m/s} \)?
Two satellites of equal mass, \( S_1 \) and \( S_2 \), orbit the Earth. \( S_1 \) is orbiting at a distance \( r \) from the Earth’s center at speed \( v \). \( S_2 \) orbits at a distance \( 2r \) from the Earth’s centre at speed \( \dfrac{v}{\sqrt{2}} \). The ratio of the centripetal force on \( S_1 \) to the centripetal force on \( S_2 \) is
While driving fast around a sharp right turn, you find yourself pressing against the car door. What is happening?
A discus is held at the end of an arm that starts at rest. The average angular acceleration of [katex]54 \, \text{rad/s}^2 [/katex] lasts for 0.25 s. The path is circular and has radius 1.1 m.
Note: A discuss is a heavy, flattened circular object for throwing.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.