0 attempts
0% avg
UBQ Credits
Objective: Calculate the acceleration of the two objects and the tension in the string.
For Acceleration
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]\text{Force on heavier mass, } F_1 = m_1g[/katex] | Weight of the heavier object (49.0 kg). |
2 | [katex]\text{Force on lighter mass, } F_2 = m_2g[/katex] | Weight of the lighter object (24.0 kg). |
3 | [katex]\text{Net force, } F_{\text{net}} = F_1 – F_2[/katex] | The difference in weights provides the net force. |
4 | [katex]F_{\text{net}} = m_1g – m_2g[/katex] | Substitute the values of [katex]F_1[/katex] and [katex]F_2[/katex]. |
5 | [katex]F_{\text{net}} = (m_1 – m_2)g[/katex] | Factor out [katex]g[/katex]. |
6 | [katex]a = \frac{F_{\text{net}}}{m_1 + m_2}[/katex] | Newton’s second law, acceleration equals net force divided by total mass. |
7 | [katex]a = \frac{(m_1 – m_2)g}{m_1 + m_2}[/katex] | Combine steps 5 and 6. |
8 | [katex]a = \frac{(49.0\text{ kg} – 24.0\text{ kg})(9.8\text{ m/s}^2)}{49.0\text{ kg} + 24.0\text{ kg}}[/katex] | Substitute the masses and gravitational acceleration. |
9 | [katex]a = \frac{25.0\text{ kg} \times 9.8\text{ m/s}^2}{73.0\text{ kg}}[/katex] | Simplify the equation. |
10 | [katex]a = 3.356\text{ m/s}^2[/katex] | Calculate to find acceleration. |
Final answer for acceleration: [katex]\boxed{a = 3.356\text{ m/s}^2}[/katex]
For Tension in the String
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]T – m_2g = m_2a[/katex] | Newton’s second law for the lighter object. |
2 | [katex]T = m_2a + m_2g[/katex] | Rearrange to solve for tension, [katex]T[/katex]. |
3 | [katex]T = m_2(a + g)[/katex] | Factor out [katex]m_2[/katex]. |
4 | [katex]T = 24.0\text{ kg}(3.356\text{ m/s}^2 + 9.8\text{ m/s}^2)[/katex] | Substitute the mass of the lighter object and calculated acceleration. |
5 | [katex]T = 24.0\text{ kg} \times 13.156\text{ m/s}^2[/katex] | Add [katex]a[/katex] and [katex]g[/katex]. |
6 | [katex]T = 315.744\text{ N}[/katex] | Calculate to find tension. |
Final answer for tension: [katex]\boxed{T = 315.744\text{ N}}[/katex]
Just ask: "Help me solve this problem."
A \( 60 \ \text{kg} \) person is riding in an elevator. At time \( t_1 \), the elevator is accelerating downward with a magnitude of \( 2 \ \text{m/s}^2 \). A short time later, at time \( t_2 \), the elevator is accelerating upward with a magnitude of \( 2 \ \text{m/s}^2 \). The ratio of the normal force exerted by the elevator on the person at time \( t_1 \) to that at time \( t_2 \) is most nearly
A conical pendulum is formed by attaching a ball of mass \( m \) to a string of length \( \ell \), then allowing the ball to move in a horizontal circle of radius \( r \). The following figure shows that the string traces out the surface of a cone, hence the name.
A \(30 \, \text{g}\) bullet is fired with a speed of \(500 \, \text{m/s}\) into a wall.
A ski tow carries people to the top of a nearby mountain. It operates on a slope of angle \( 15.7^\circ \) of length \( 260 \) \( \text{m} \). The rope moves at a speed of \( 13.0 \) \( \text{km/h} \) and provides power for \( 54 \) riders at one time, with an average mass per rider of \( 67.0 \) \( \text{kg} \).
The box is sitting on the floor of an elevator. The elevator is accelerating upward. The magnitude of the normal force on the box is
3.36 m/s2, T = 316 N
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.