0 attempts
0% avg
UBQ Credits
Before solving the question, we can find the radius of the ball using Pythagorean theorem to get .866 m. We can also use the trig to solve for the angle each rope makes with the horizontal (30° for both ropes).
Sum of Forces in the Horizontal Direction:
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] \cos(30) = \frac{\sqrt{3}}{2} [/katex] | Cosine of [katex]30^\circ[/katex]. |
2 | [katex] F_{\text{centripetal}} = \frac{mv^2}{r} [/katex] | Centripetal force for circular motion. |
3 | [katex] T_1 \cos(\theta) + T_2 \cos(\theta) = \frac{mv^2}{r} [/katex] | Sum of horizontal components of tension equals centripetal force. |
4 | [katex] T_1 \frac{\sqrt{3}}{2} + T_2 \frac{\sqrt{3}}{2} = \frac{(0.5)(7.2)^2}{0.866} [/katex] | Substitute values for [katex]m[/katex], [katex]v[/katex], [katex]r[/katex], and [katex]\cos(\theta)[/katex]. |
5 | [katex] \frac{\sqrt{3}}{2}(T_1 + T_2) = 29.93 [/katex] | Calculate centripetal force and factor out [katex]\frac{\sqrt{3}}{2}[/katex]. |
Sum of Forces in the Vertical Direction:
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] \sin(30) = \frac{1}{2} [/katex] | Sine of [katex]30^\circ[/katex]. |
2 | [katex] w = mg [/katex] | Weight of the sphere. |
3 | [katex] T_2 \sin(\theta) + mg – T_1 \sin(\theta) = 0 [/katex] | Vertical forces must balance: upward tensions and downward weight. |
4 | [katex] T_2 \frac{1}{2} + (0.5)(9.8) – T_1 \frac{1}{2} = 0 [/katex] | Substitute values for [katex]m[/katex], [katex]g[/katex], and [katex]\sin(\theta)[/katex]. |
5 | [katex] \frac{1}{2}(T_2 – T_1) + 4.9 = 0 [/katex] | Factor out [katex]\frac{1}{2}[/katex] and calculate weight. |
Solving for Tensions:
Step | Formula Derivation | Reasoning |
---|---|---|
1 | Solve equations | Use the system of equations to solve for [katex]T_1[/katex] and [katex]T_2[/katex]. |
2 | [katex] T_1 \approx 22.18 \text{ N} [/katex] | Numerical solution for [katex]T_1[/katex]. |
3 | [katex] T_2 \approx 12.38 \text{ N} [/katex] | Numerical solution for [katex]T_2[/katex]. |
Final Tensions:
Just ask: "Help me solve this problem."
A spherical balloon of mass \( 226 \) \( \text{kg} \) is filled with helium gas until its volume is \( 325 \) \( \text{m}^3 \). Assume the density of air is \( 1.29 \) \( \text{kg/m}^3 \) and the density of helium is \( 0.179 \) \( \text{kg/m}^3 \).
A compressed spring mounted on a disk can project a small ball. When the disk is not rotating, as shown in the top view above, the ball moves radially outward. The disk then rotates in a counterclockwise direction as seen from above, and the ball is projected outward at the instant the disk is in the position shown above. Which of the following best shows the subsequent path of the ball relative to the ground?
A \(5.0 \, \text{g}\) coin is placed \(15 \, \text{cm}\) from the center of a turntable. The coin has coefficients of static and kinetic friction of \(\mu_s = 0.80\) and \(\mu_k = 0.50\). The turntable slowly speeds up to \(60 \, \text{rpm}\). Does the coin slide off the turntable?
Why do you tend to slide across the car seat when the car makes a sharp turn?
A loop-de-loop roller coaster has a radius of \( 30 \) \( \text{m} \). Determine the apparent weight a \( 500 \) \( \text{N} \) person will feel at the bottom of the loop while traveling at a speed of \( 25 \) \( \text{m/s} \) and at the top of the loop while traveling at a speed of \( 20 \) \( \text{m/s} \).
Upper wire: \(22 \, \text{N}\)
Lower wire: \(12 \, \text{N}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?