0 attempts
0% avg
UBQ Credits
Part a: Calculate the acceleration of the system
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] F_{\text{net,A}} = m_A \cdot a [/katex] | Net force on mass A equals mass times acceleration. |
2 | [katex] F_{\text{net,B}} = m_B \cdot a [/katex] | Net force on mass B equals mass times acceleration. |
3 | [katex] F_{\text{net,A}} = T – m_A \cdot g [/katex] | Tension upwards minus weight of A downwards. |
4 | [katex] F_{\text{net,B}} = m_B \cdot g – T [/katex] | Weight of B downwards minus tension upwards. |
5 | [katex] m_A \cdot a = T – m_A \cdot g [/katex] | Substitute step 1 into step 3. |
6 | [katex] m_B \cdot a = m_B \cdot g – T [/katex] | Substitute step 2 into step 4. |
7 | [katex] m_A \cdot a + m_B \cdot a = m_B \cdot g – m_A \cdot g [/katex] | Add step 5 and step 6 equations. |
8 | [katex] a = \frac{(m_B – m_A) \cdot g}{m_A + m_B} [/katex] | Solve for acceleration a. |
Use the given number from the problem.
Step | Formula Derivation | Reasoning |
---|---|---|
9 | [katex] a = \frac{(2.4 – 3.2) \cdot 9.8}{3.2 + 2.4} [/katex] | Plug in known values. |
10 | [katex] a = \frac{-0.8 \cdot 9.8}{5.6} [/katex] | Simplify the numerator and denominator. |
11 | [katex] a = -1.4 , \text{m/s}^2 [/katex] | Calculate the acceleration. |
[katex] \boxed{a = -1.4 , \text{m/s}^2} [/katex] Negative sign indicates downward direction.
Part b: Calculate the tension in the string
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] T = m_A \cdot (g + a) [/katex] | Tension equals mass A times (gravity plus acceleration). |
Using the previously calculated acceleration:
Step | Formula Derivation | Reasoning |
---|---|---|
2 | [katex] T = 3.2 \cdot (9.8 – 1.4) [/katex] | Plug in known values for mass and acceleration |
3 | [katex] T = 3.2 \cdot 8.4 [/katex] | Simplify the terms in the parentheses. |
4 | [katex] T = 26.88 , \text{N} [/katex] | Calculate the tension. |
[katex] \boxed{T = 26.88 , \text{N}} [/katex]
Part c: Calculate the final speed of mass A before it hits the ground
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] v = \sqrt{2 \cdot} [/katex] | a |
2 | [katex] v = \sqrt{2 \cdot 1.4 \cdot 0.5} [/katex] | Plug in the magnitude of a and s = 0.5m. |
3 | [katex] v = \sqrt{1.4} [/katex] | Calculate the expression under the square root. |
4 | [katex] v = 1.18 , \text{m/s} [/katex] | Find the square root to get the final velocity. |
[katex] \boxed{v = 1.18 , \text{m/s}} [/katex]
Just ask: "Help me solve this problem."
A person whose weight is 4.92 × 102 N is being pulled up vertically by a rope from the bottom of a cave that is 35.2 m deep. The maximum tension that the rope can withstand without breaking is 592 N. What is the shortest time, starting from rest, in which the person can be brought out of the cave?
A pulley system consists of two blocks of mass 5 kg and 10 kg, connected by a rope of negligible mass that passes over a pulley of radius 0.1 meters and mass 2 kg. The pulley is free to rotate about its axis. The system is released from rest, and the block of mass 10 kg starts to move downwards. Assuming that the coefficient of kinetic friction between the pulley and the rope is 0.2, and neglecting air resistance, determine
The box is sitting on the floor of an elevator. The elevator is accelerating upward. The magnitude of the normal force on the box is
Three blocks of masses \( 1.0 \, \text{kg} \), \( 2.0 \, \text{kg} \), and \( 4.0 \, \text{kg} \) are connected by massless strings, one of which passes over a frictionless pulley of negligible mass, as shown above. Calculate each of the following.
A block sliding down an frictionless inclined plane is experiencing both gravitational and normal forces; which force’s magnitude changes when the angle of the incline is increased?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.