0 attempts
0% avg
UBQ Credits
Objective: Determine the acceleration of the blocks and the tension in the cord given the masses, coefficients of friction, and incline angle given:
Part a: Calculate the acceleration of the blocks
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] F_{\text{gravity, parallel A}} = m_A g \sin(\theta) [/katex] | Parallel component of gravitational force for A. |
2 | [katex] F_{\text{gravity, parallel B}} = m_B g \sin(\theta) [/katex] | Parallel component of gravitational force for B. |
3 | [katex] F_{\text{friction A}} = \mu_A m_A g \cos(\theta) [/katex] | Frictional force on A. |
4 | [katex] F_{\text{friction B}} = \mu_B m_B g \cos(\theta) [/katex] | Frictional force on B. |
5 | [katex] F_{\text{net A}} = F_{\text{gravity, parallel A}} – F_{\text{friction A}} [/katex] | Net force on A. |
6 | [katex] F_{\text{net B}} = F_{\text{gravity, parallel B}} – F_{\text{friction B}} [/katex] | Net force on B. |
7 | [katex] F_{\text{net}} = F_{\text{net B}} – F_{\text{net A}} [/katex] | Total net force on the system. |
8 | [katex] a = \frac{F_{\text{net}}}{m_A + m_B} [/katex] | Acceleration of the system. |
Plug in the given values:
Step | Formula Derivation | Reasoning |
---|---|---|
9 | [katex] a = \frac{(m_B g \sin(\theta) – \mu_B m_B g \cos(\theta)) – (m_A g \sin(\theta) – \mu_A m_A g \cos(\theta))}{m_A + m_B} [/katex] | Substitute the net forces from steps 5 and 6. |
10 | [katex] a = \frac{(5 \cdot 9.8 \cdot \sin(32^\circ) – 0.30 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ)) – (5 \cdot 9.8 \cdot \sin(32^\circ) – 0.20 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ))}{5 + 5} [/katex] | Substitute given values. |
11 | [katex] a = \frac{(5 \cdot 9.8 \cdot (\sin(32^\circ) – 0.30 \cdot \cos(32^\circ))) – (5 \cdot 9.8 \cdot (\sin(32^\circ) – 0.20 \cdot \cos(32^\circ)))}{10} [/katex] | Simplify the expression. |
12 | [katex] a = \frac{5 \cdot 9.8 \cdot (0.10 \cdot \cos(32^\circ))}{10} [/katex] | Combine like terms. |
13 | [katex] a = \frac{9.8 \cdot (0.10 \cdot \cos(32^\circ))}{2} [/katex] | Simplify further. |
Part b: Calculate the tension in the cord
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] T = m_A \cdot a + F_{\text{friction A}} [/katex] | Tension equals the force to accelerate block A plus frictional force on A. |
2 | [katex] F_{\text{friction A}} = \mu_A \cdot m_A \cdot g \cdot \cos(\theta) [/katex] | Frictional force opposing the motion of block A. |
3 | [katex] T = m_A \cdot a + \mu_A \cdot m_A \cdot g \cdot \cos(\theta) [/katex] | Substitute the frictional force into the tension formula. |
4 | [katex] T = m_A \cdot \left( \frac{F_{\text{net}}}{m_A + m_B} \right) + \mu_A \cdot m_A \cdot g \cdot \cos(\theta) [/katex] | Substitute the expression for �a from the acceleration calculation. |
5 | [katex] T = 5 \cdot \left( \frac{(5 \cdot 9.8 \cdot \sin(32^\circ) – 0.30 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ)) – (5 \cdot 9.8 \cdot \sin(32^\circ) – 0.20 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ))}{10} \right) + 0.20 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ) [/katex] | Insert given values for masses, coefficients of friction, gravitational acceleration, and angle. |
6 | [katex] T = 5 \cdot \left( \frac{5 \cdot 9.8 \cdot (0.10 \cdot \cos(32^\circ))}{10} \right) + 0.20 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ) [/katex] | Simplify the expression for the net force component. |
7 | [katex] T = \frac{5 \cdot 9.8 \cdot (0.10 \cdot \cos(32^\circ))}{2} + 0.20 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ) [/katex] | Further simplify the tension formula. |
8 | [katex] T = \frac{5 \cdot 9.8 \cdot 0.10 \cdot \cos(32^\circ)}{2} + 0.20 \cdot 5 \cdot 9.8 \cdot \cos(32^\circ) [/katex] | Combine like terms for the final tension calculation. |
9 | [katex] T \approx 17.66 , \text{N} [/katex] | Calculate the numeric value for tension. |
[katex] \boxed{T = 17.66 , \text{N}} [/katex]
Just ask: "Help me solve this problem."
A horizontal 300 N force pushes a 40 kg object across a horizontal 10 meter frictionless surface. After this, the block slides up a 20° incline. Assuming the incline has a coefficient of kinetic friction of 0.4, how far along the incline with the object slide?
A 1.5 kg block is pushed to the right with just enough force to get it to move. The block is pushed for five seconds with this constant force, then the force is released and the block slides to a stop. If the coefficient of kinetic friction is 0.300 and the coefficient of static friction is 0.400. Calculate the amount of time that passes from when the force is applied to when the block stops.
A student is watching their hockey puck slide up and down an incline. They give the puck a quick push along a frictionless table, and it slides up a 30° rough incline (µk = .4) of distance d, with an initial speed of 5 m/s, and then it slides back down.
Block m1 is stacked on top of block m2. Block m2 is connected by a light cord to block m3, which is pulled along a frictionless surface with a force F as shown in the diagram above. Block m1 is accelerated at the same rate as block m2 because of the frictional forces between the two blocks. If all three blocks have the same mass m, what is the minimum coefficient of static friction between block m1 and block m2?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.