New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

AP Physics

Unit 5 - Linear Momentum

FRQ
Mathematical
Intermediate

Pro Tier

Unlimited Grading Credits, Explanations, and AI Assist

0 attempts

0% avg

Explanation 0
0

Part (a): Bullet-Block Collision

Step Derivation/Formula Reasoning
1 \[ m_{\text{bullet}}\, v_i = \left(m_{\text{bullet}} + m_{\text{block}}\right)\, v_x \] Apply conservation of momentum for this inelastic collision where the bullet embeds in the block.
2 \[ 0.0350 \times 425 = \left(0.0350 + 0.550\right)\, v_x \] Substitute the given values: the bullet mass is \(0.0350\) kg, its velocity is \(425\) m/s, and the block mass is \(0.550\) kg.
3 \[ v_x = \frac{0.0350 \times 425}{0.0350 + 0.550} = \frac{14.875}{0.585} \] Compute the bullet’s momentum \(0.0350 \times 425 = 14.875\) and the total mass \(0.0350 + 0.550 = 0.585\) kg to solve for \(v_x\).
4 \[ \boxed{v_x \approx 25.4 \; \text{m/s}} \] The velocity of the bullet and block together right after the collision is approximately \(25.4\) m/s.

Part (b): Sliding with Friction

Step Derivation/Formula Reasoning
1 \[ a = -\mu_k\, g \] Friction produces a deceleration given by the product of the kinetic friction coefficient \(\mu_k\) and gravitational acceleration \(g\). The negative sign indicates deceleration.
2 \[ a = -0.40 \times 9.80 = -3.92 \; \text{m/s}^2 \] Substitute \(\mu_k = 0.40\) and \(g = 9.80 \; \text{m/s}^2\) to calculate the acceleration.
3 \[ v_x^2 = (25.4)^2 + 2\,(-3.92)\,(10.0) \] Use the kinematic equation where the initial velocity is the \(25.4\) m/s from part (a) and the displacement \(\Delta x\) is \(10.0\) m.
4 \[ v_x^2 \approx 645.16 – 78.4 = 566.76 \] Simplify the expression by computing \((25.4)^2 \approx 645.16\) and \(2 \times 3.92 \times 10.0 = 78.4\).
5 \[ v_x \approx \sqrt{566.76} \approx 23.8 \; \text{m/s} \]
\quad \text{or} \quad \boxed{v_x \approx 23.8 \; \text{m/s}} \]
Taking the square root yields the final velocity after sliding \(10.0\) m: approximately \(23.8\) m/s.

Part (c): Collision with Second Block and Stopping Distance

Step Derivation/Formula Reasoning
1 \[ m_1\, v_i = \left(m_1 + m_2\right)\, v_x \] Apply conservation of momentum for the second collision where the bullet-embedded block (\(m_1 = 0.585\) kg) collides inelastically with a stationary block (\(m_2 = 2.50\) kg).
2 \[ v_x = \frac{0.585 \times 23.8}{0.585 + 2.50} \] Substitute \(v_i = 23.8\) m/s from part (b) and add the masses \(0.585\) kg and \(2.50\) kg for the collision.
3 \[ v_x \approx \frac{13.923}{3.085} \approx 4.51 \; \text{m/s} \] Calculate the post-collision velocity; the numerator \(0.585 \times 23.8 \approx 13.923\) and the total mass is \(3.085\) kg.
4 \[ 0 = (4.51)^2 + 2\,(-3.92)\,d \] Use the kinematic equation to find the distance \(d\) traveled before coming to a stop, with \(a = -3.92\) m/s² due to friction.
5 \[ d = \frac{(4.51)^2}{2 \times 3.92} \] Solve for \(d\) by rearranging the kinematics equation.
6 \[ \boxed{d \approx 2.60 \; \text{m}} \] Evaluating the expression gives a stopping distance of approximately \(2.60\) m after the collision.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

We'll help clarify entire units in one hour or less — guaranteed.

NEW AI Quiz Builder

Be the first to use our new Quiz platform to create and grade quizzes from scratch. Join the waitlist and we'll email you for early access.

Go Pro to remove ads + unlimited access to our AI learning tools.
  1. \(25.4 \text{ m/s}\)
  2. \(23.8 \text{ m/s}\)
  3. \(2.60 \text{ m}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

Metric Prefixes

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!

Phy Pro

One price to unlock most advanced version of Phy across all our tools.

$11.99

per month

Billed Monthly. Cancel Anytime.

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.

Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.