0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ m_{\text{bullet}}\, v_i = \left(m_{\text{bullet}} + m_{\text{block}}\right)\, v_x \] | Apply conservation of momentum for this inelastic collision where the bullet embeds in the block. |
| 2 | \[ 0.0350 \times 425 = \left(0.0350 + 0.550\right)\, v_x \] | Substitute the given values: the bullet mass is \(0.0350\) kg, its velocity is \(425\) m/s, and the block mass is \(0.550\) kg. |
| 3 | \[ v_x = \frac{0.0350 \times 425}{0.0350 + 0.550} = \frac{14.875}{0.585} \] | Compute the bullet’s momentum \(0.0350 \times 425 = 14.875\) and the total mass \(0.0350 + 0.550 = 0.585\) kg to solve for \(v_x\). |
| 4 | \[ \boxed{v_x \approx 25.4 \; \text{m/s}} \] | The velocity of the bullet and block together right after the collision is approximately \(25.4\) m/s. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ a = -\mu_k\, g \] | Friction produces a deceleration given by the product of the kinetic friction coefficient \(\mu_k\) and gravitational acceleration \(g\). The negative sign indicates deceleration. |
| 2 | \[ a = -0.40 \times 9.80 = -3.92 \; \text{m/s}^2 \] | Substitute \(\mu_k = 0.40\) and \(g = 9.80 \; \text{m/s}^2\) to calculate the acceleration. |
| 3 | \[ v_x^2 = (25.4)^2 + 2\,(-3.92)\,(10.0) \] | Use the kinematic equation where the initial velocity is the \(25.4\) m/s from part (a) and the displacement \(\Delta x\) is \(10.0\) m. |
| 4 | \[ v_x^2 \approx 645.16 – 78.4 = 566.76 \] | Simplify the expression by computing \((25.4)^2 \approx 645.16\) and \(2 \times 3.92 \times 10.0 = 78.4\). |
| 5 | \[ v_x \approx \sqrt{566.76} \approx 23.8 \; \text{m/s} \] \quad \text{or} \quad \boxed{v_x \approx 23.8 \; \text{m/s}} \] |
Taking the square root yields the final velocity after sliding \(10.0\) m: approximately \(23.8\) m/s. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ m_1\, v_i = \left(m_1 + m_2\right)\, v_x \] | Apply conservation of momentum for the second collision where the bullet-embedded block (\(m_1 = 0.585\) kg) collides inelastically with a stationary block (\(m_2 = 2.50\) kg). |
| 2 | \[ v_x = \frac{0.585 \times 23.8}{0.585 + 2.50} \] | Substitute \(v_i = 23.8\) m/s from part (b) and add the masses \(0.585\) kg and \(2.50\) kg for the collision. |
| 3 | \[ v_x \approx \frac{13.923}{3.085} \approx 4.51 \; \text{m/s} \] | Calculate the post-collision velocity; the numerator \(0.585 \times 23.8 \approx 13.923\) and the total mass is \(3.085\) kg. |
| 4 | \[ 0 = (4.51)^2 + 2\,(-3.92)\,d \] | Use the kinematic equation to find the distance \(d\) traveled before coming to a stop, with \(a = -3.92\) m/s² due to friction. |
| 5 | \[ d = \frac{(4.51)^2}{2 \times 3.92} \] | Solve for \(d\) by rearranging the kinematics equation. |
| 6 | \[ \boxed{d \approx 2.60 \; \text{m}} \] | Evaluating the expression gives a stopping distance of approximately \(2.60\) m after the collision. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
An object of mass 2 kg is thrown vertically downwards with an initial kinetic energy of 100 J. What is the distance fallen by the object at the instant when its kinetic energy has doubled?
A boy of mass \( m \) and a girl of mass \( 2m \) are initially at rest at the center of a frozen pond. They push each other so that she slides to the left at speed \( v \) across the frictionless ice surface and he slides to the right. What is the total work done by the children?
A linear spring of force constant \( k \) is used in a physics lab experiment. A block of mass \( m \) is attached to the spring and the resulting frequency, \( f \), of the simple harmonic oscillations is measured. Blocks of various masses are used in different trials, and in each case, the corresponding frequency is measured and recorded. If \( f^{2} \) is plotted versus \( \frac{1}{m} \), the graph will be a straight line with slope

Using only work and energy, find the velocity of the masses after they have traveled \(0.8 \, \text{m}\). Refer to the image above.
A \(0.10 \, \text{kg}\) ball, traveling horizontally at \(25 \, \text{m/s}\), strikes a wall and rebounds at \(19 \, \text{m/s}\). What is the magnitude of the change in the momentum of the ball during the rebound?

A small block of mass \( M \) is released from rest at the top of the curved frictionless ramp shown above. The block slides down the ramp and is moving with a speed \( 3.5v_0 \) when it collides with a larger block of mass \( 1.5M \) at rest at the bottom of the incline. The larger block moves to the right at a speed \( 2v_0 \) immediately after the collision.
Express your answers to the following questions in terms of the given quantities and fundamental constants.
A net force of \( 8.0 \) \( \text{N} \) accelerates a \( 4.0 \) \( \text{kg} \) body from rest to a speed of \( 5.0 \) \( \text{m s}^{-1} \). Which of the following is equal to the work done by the force?
A \(4 \, \text{kg}\) mass is traveling at \(10 \, \text{m/s}\) to the right when it collides inelastically with a stationary \(7 \, \text{kg}\) mass. The \(7 \, \text{kg}\) mass then travels at \(2 \, \text{m/s}\) at an angle of \(22^\circ\) below the horizontal. What are the velocity and the angle of the \(4 \, \text{kg}\) mass?
A spring in a pogo-stick is compressed \( 12 \) \( \text{cm} \) when a \( 40. \) \( \text{kg} \) girl stands on it. What is the spring constant for the pogo-stick spring?
A block with mass \( m \) slides at speed \( v_0 \) on a smooth surface and hits a stationary block with mass \( M \). They stick together and move at speed \( \frac{v_0}{3} \). Find \( M \) in terms of \( m \).
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?