0 attempts
0% avg
UBQ Credits
Velocity just after the collision
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]m_1v_1 + m_2v_2 = (m_1 + m_2)v'[/katex] | Conservation of momentum, where [katex]m_1[/katex] and [katex]m_2[/katex] are the masses of the bullet and block, [katex]v_1[/katex] and [katex]v_2[/katex] are their initial velocities, and [katex]v'[/katex] is their final velocity. |
2 | [katex]v’ = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}[/katex] | Solve for [katex]v'[/katex]. Given: [katex]m_1 = 0.0350 , \text{kg}, v_1 = 425 , \text{m/s}, m_2 = 0.550 , \text{kg}, v_2 = 0 , \text{m/s}[/katex]. |
3 | [katex]v’ = 25.43 , \text{m/s}[/katex] | The velocity just after the collision |
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]v^2 = v’^2 + 2ad[/katex] | Kinematic equation for motion under constant acceleration, where [katex]v[/katex] is the final velocity, [katex]v'[/katex] is the initial velocity, [katex]a[/katex] is acceleration, and [katex]d[/katex] is the distance. |
2 | [katex]a = -\mu_k g[/katex] | Acceleration due to kinetic friction, where [katex]\mu_k[/katex] is the coefficient of kinetic friction and [katex]g[/katex] is the acceleration due to gravity (approximately [katex]9.81 , \text{m/s}^2[/katex]). Given: [katex]\mu_k = 0.40[/katex]. |
3 | [katex]v = \sqrt{v’^2 + 2ad}[/katex] | Solve for [katex]v[/katex]. Given: [katex]v’ = 25.43 , \text{m/s}, d = 10.0 , \text{m}[/katex]. |
4 | [katex]v = 23.84 , \text{m/s}[/katex] | Velocity after sliding 10.0 meters |
Distance traveled by the combined system (2 blocks and the bullet)
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]m_1v_1 + m_2v_2 = (m_1 + m_2)v'[/katex] | Conservation of momentum for the collision between the bullet-block system and the second block, where [katex]m_1[/katex] and [katex]v_1[/katex] are the mass and velocity of the bullet-block system, [katex]m_2[/katex] and [katex]v_2[/katex] are the mass and velocity of the second block, and [katex]v'[/katex] is the final velocity of the combined system. |
2 | [katex]v’ = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}[/katex] | Solve for [katex]v'[/katex]. Given: [katex]m_1 = 0.585 , \text{kg}, v_1 = 23.84 , \text{m/s}, m_2 = 2.50 , \text{kg}, v_2 = 0 , \text{m/s}[/katex]. |
3 | [katex]0 = v’^2 + 2ad[/katex] | Kinematic equation for motion under constant acceleration when the final velocity is 0. |
4 | [katex]d = \frac{-v’^2}{2a}[/katex] | Solve for [katex]d[/katex]. The acceleration [katex]a[/katex] remains [katex]-\mu_k g[/katex] as before. |
5 | [katex]v’ = 4.52 , \text{m/s}[/katex] | Final velocity of the combined system after the second collision |
6 | [katex]d = 2.60 , \text{m}[/katex] | Distance traveled by the combined system before stopping. |
Just ask: "Help me solve this problem."
The box in the diagram is sliding to the right across a horizontal table, under the influence of the forces shown. Which force(s) is doing negative work on the box?
A skier with a mass of 58 kg glides up a snowy incline that forms an angle of 28 degrees with the horizontal. The skier initially moves at a speed of 7.2 m/s. After traveling a distance of 2.3 meters up the slope, the skier’s speed reduces to 3.8 m/s.
A rocket explodes into two fragments, one 25 times heavier than the other. The change in momentum of the lighter fragment is
A 2kg object slides east at 4 m/s and collides with a stationary 3 kg object. After the collision, the 2 kg object is traveling at an unknown velocity at 15° north of east and the 3 kg object is traveling at 38° south of east. What is each object’s final velocity?
A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with nearly the same speed with which it hit. The clay sticks to the wall. Which one of these objects experiences the greater impulse?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.