0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ m_{\text{bullet}}\, v_i = \left(m_{\text{bullet}} + m_{\text{block}}\right)\, v_x \] | Apply conservation of momentum for this inelastic collision where the bullet embeds in the block. |
| 2 | \[ 0.0350 \times 425 = \left(0.0350 + 0.550\right)\, v_x \] | Substitute the given values: the bullet mass is \(0.0350\) kg, its velocity is \(425\) m/s, and the block mass is \(0.550\) kg. |
| 3 | \[ v_x = \frac{0.0350 \times 425}{0.0350 + 0.550} = \frac{14.875}{0.585} \] | Compute the bullet’s momentum \(0.0350 \times 425 = 14.875\) and the total mass \(0.0350 + 0.550 = 0.585\) kg to solve for \(v_x\). |
| 4 | \[ \boxed{v_x \approx 25.4 \; \text{m/s}} \] | The velocity of the bullet and block together right after the collision is approximately \(25.4\) m/s. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ a = -\mu_k\, g \] | Friction produces a deceleration given by the product of the kinetic friction coefficient \(\mu_k\) and gravitational acceleration \(g\). The negative sign indicates deceleration. |
| 2 | \[ a = -0.40 \times 9.80 = -3.92 \; \text{m/s}^2 \] | Substitute \(\mu_k = 0.40\) and \(g = 9.80 \; \text{m/s}^2\) to calculate the acceleration. |
| 3 | \[ v_x^2 = (25.4)^2 + 2\,(-3.92)\,(10.0) \] | Use the kinematic equation where the initial velocity is the \(25.4\) m/s from part (a) and the displacement \(\Delta x\) is \(10.0\) m. |
| 4 | \[ v_x^2 \approx 645.16 – 78.4 = 566.76 \] | Simplify the expression by computing \((25.4)^2 \approx 645.16\) and \(2 \times 3.92 \times 10.0 = 78.4\). |
| 5 | \[ v_x \approx \sqrt{566.76} \approx 23.8 \; \text{m/s} \] \quad \text{or} \quad \boxed{v_x \approx 23.8 \; \text{m/s}} \] |
Taking the square root yields the final velocity after sliding \(10.0\) m: approximately \(23.8\) m/s. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ m_1\, v_i = \left(m_1 + m_2\right)\, v_x \] | Apply conservation of momentum for the second collision where the bullet-embedded block (\(m_1 = 0.585\) kg) collides inelastically with a stationary block (\(m_2 = 2.50\) kg). |
| 2 | \[ v_x = \frac{0.585 \times 23.8}{0.585 + 2.50} \] | Substitute \(v_i = 23.8\) m/s from part (b) and add the masses \(0.585\) kg and \(2.50\) kg for the collision. |
| 3 | \[ v_x \approx \frac{13.923}{3.085} \approx 4.51 \; \text{m/s} \] | Calculate the post-collision velocity; the numerator \(0.585 \times 23.8 \approx 13.923\) and the total mass is \(3.085\) kg. |
| 4 | \[ 0 = (4.51)^2 + 2\,(-3.92)\,d \] | Use the kinematic equation to find the distance \(d\) traveled before coming to a stop, with \(a = -3.92\) m/s² due to friction. |
| 5 | \[ d = \frac{(4.51)^2}{2 \times 3.92} \] | Solve for \(d\) by rearranging the kinematics equation. |
| 6 | \[ \boxed{d \approx 2.60 \; \text{m}} \] | Evaluating the expression gives a stopping distance of approximately \(2.60\) m after the collision. |
Just ask: "Help me solve this problem."
One end of a spring is attached to a solid wall while the other end just reaches to the edge of a horizontal, frictionless tabletop, which is a distance \(h\) above the floor. A block of mass \(M\) is placed against the end of the spring and pushed toward the wall until the spring has been compressed a distance \(x\). The block is released and strikes the floor a horizontal distance \(D\) from the edge of the table. Air resistance is negligible. Derive expressions for the following quantities only in terms of \(M, x, D, h,\) and any constants.

A simple pendulum consists of a bob of mass 1.8 kg attached to a string of length 2.3 m. The pendulum is held at an angle of 30° from the vertical by a light horizontal string attached to a wall, as shown above.

A small block of mass \( M \) is released from rest at the top of the curved frictionless ramp shown above. The block slides down the ramp and is moving with a speed \( 3.5v_0 \) when it collides with a larger block of mass \( 1.5M \) at rest at the bottom of the incline. The larger block moves to the right at a speed \( 2v_0 \) immediately after the collision.
Express your answers to the following questions in terms of the given quantities and fundamental constants.
A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with nearly the same speed with which it hit. The clay sticks to the wall. Which one of these objects experiences the greater impulse?
A moderate force will break an egg. However, an egg dropped on the road usually breaks, while one dropped on the grass usually does not break because for the egg dropped on the grass:
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?