0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ m_{\text{bullet}}\, v_i = \left(m_{\text{bullet}} + m_{\text{block}}\right)\, v_x \] | Apply conservation of momentum for this inelastic collision where the bullet embeds in the block. |
2 | \[ 0.0350 \times 425 = \left(0.0350 + 0.550\right)\, v_x \] | Substitute the given values: the bullet mass is \(0.0350\) kg, its velocity is \(425\) m/s, and the block mass is \(0.550\) kg. |
3 | \[ v_x = \frac{0.0350 \times 425}{0.0350 + 0.550} = \frac{14.875}{0.585} \] | Compute the bullet’s momentum \(0.0350 \times 425 = 14.875\) and the total mass \(0.0350 + 0.550 = 0.585\) kg to solve for \(v_x\). |
4 | \[ \boxed{v_x \approx 25.4 \; \text{m/s}} \] | The velocity of the bullet and block together right after the collision is approximately \(25.4\) m/s. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ a = -\mu_k\, g \] | Friction produces a deceleration given by the product of the kinetic friction coefficient \(\mu_k\) and gravitational acceleration \(g\). The negative sign indicates deceleration. |
2 | \[ a = -0.40 \times 9.80 = -3.92 \; \text{m/s}^2 \] | Substitute \(\mu_k = 0.40\) and \(g = 9.80 \; \text{m/s}^2\) to calculate the acceleration. |
3 | \[ v_x^2 = (25.4)^2 + 2\,(-3.92)\,(10.0) \] | Use the kinematic equation where the initial velocity is the \(25.4\) m/s from part (a) and the displacement \(\Delta x\) is \(10.0\) m. |
4 | \[ v_x^2 \approx 645.16 – 78.4 = 566.76 \] | Simplify the expression by computing \((25.4)^2 \approx 645.16\) and \(2 \times 3.92 \times 10.0 = 78.4\). |
5 | \[ v_x \approx \sqrt{566.76} \approx 23.8 \; \text{m/s} \] \quad \text{or} \quad \boxed{v_x \approx 23.8 \; \text{m/s}} \] |
Taking the square root yields the final velocity after sliding \(10.0\) m: approximately \(23.8\) m/s. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ m_1\, v_i = \left(m_1 + m_2\right)\, v_x \] | Apply conservation of momentum for the second collision where the bullet-embedded block (\(m_1 = 0.585\) kg) collides inelastically with a stationary block (\(m_2 = 2.50\) kg). |
2 | \[ v_x = \frac{0.585 \times 23.8}{0.585 + 2.50} \] | Substitute \(v_i = 23.8\) m/s from part (b) and add the masses \(0.585\) kg and \(2.50\) kg for the collision. |
3 | \[ v_x \approx \frac{13.923}{3.085} \approx 4.51 \; \text{m/s} \] | Calculate the post-collision velocity; the numerator \(0.585 \times 23.8 \approx 13.923\) and the total mass is \(3.085\) kg. |
4 | \[ 0 = (4.51)^2 + 2\,(-3.92)\,d \] | Use the kinematic equation to find the distance \(d\) traveled before coming to a stop, with \(a = -3.92\) m/s² due to friction. |
5 | \[ d = \frac{(4.51)^2}{2 \times 3.92} \] | Solve for \(d\) by rearranging the kinematics equation. |
6 | \[ \boxed{d \approx 2.60 \; \text{m}} \] | Evaluating the expression gives a stopping distance of approximately \(2.60\) m after the collision. |
Just ask: "Help me solve this problem."
Speed | \( 10 \, \mathrm{m/s} \) | \( 20 \, \mathrm{m/s} \) | \( 30 \, \mathrm{m/s} \) |
Braking Distance | \( 6.1 \, \mathrm{m} \) | \( 23.9 \, \mathrm{m} \) | \( 53.5 \, \mathrm{m} \) |
A car of mass \( 1500 \, \mathrm{kg} \) is traveling at one of the speeds listed when the brakes are first applied. Using the data above, what is the magnitude of the average braking force required to stop the car?
A snowboarder starts from rest and slides down a \(32^\circ\) incline that’s \(75 \, \text{m}\) long.
A space probe far from the Earth is traveling at 14.8 km/s. It has mass 1312 kg. The probe fires its rockets to give a constant thrust of 156 kN for 220 seconds. It accelerates in the same direction as its initial velocity. In this time it burns 150 kg of fuel. Calculate final speed of the space probe in km/s.
Note: This is a bonus question. Skip if you haven’t yet taken calculus.
Two blocks connected to a compressed spring move right at speed v. After releasing the spring, the left block moves left at speed [katex] v_2 [/katex], the right block moves right. What is the center speed of the blocks then?
The launching mechanism of a toy gun consists of a spring with an unknown spring constant, \( k \). When the spring is compressed \( 0.120 \, \text{m} \) vertically, a \( 35.0 \, \text{g} \) projectile is able to be fired to a maximum height of \( 25 \, \text{m} \) above the position of the projectile when the spring is compressed. Assume that the barrel of the gun is frictionless.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?