0 attempts
0% avg
UBQ Credits
Velocity just after the collision
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]m_1v_1 + m_2v_2 = (m_1 + m_2)v'[/katex] | Conservation of momentum, where [katex]m_1[/katex] and [katex]m_2[/katex] are the masses of the bullet and block, [katex]v_1[/katex] and [katex]v_2[/katex] are their initial velocities, and [katex]v'[/katex] is their final velocity. |
2 | [katex]v’ = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}[/katex] | Solve for [katex]v'[/katex]. Given: [katex]m_1 = 0.0350 , \text{kg}, v_1 = 425 , \text{m/s}, m_2 = 0.550 , \text{kg}, v_2 = 0 , \text{m/s}[/katex]. |
3 | [katex]v’ = 25.43 , \text{m/s}[/katex] | The velocity just after the collision |
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]v^2 = v’^2 + 2ad[/katex] | Kinematic equation for motion under constant acceleration, where [katex]v[/katex] is the final velocity, [katex]v'[/katex] is the initial velocity, [katex]a[/katex] is acceleration, and [katex]d[/katex] is the distance. |
2 | [katex]a = -\mu_k g[/katex] | Acceleration due to kinetic friction, where [katex]\mu_k[/katex] is the coefficient of kinetic friction and [katex]g[/katex] is the acceleration due to gravity (approximately [katex]9.81 , \text{m/s}^2[/katex]). Given: [katex]\mu_k = 0.40[/katex]. |
3 | [katex]v = \sqrt{v’^2 + 2ad}[/katex] | Solve for [katex]v[/katex]. Given: [katex]v’ = 25.43 , \text{m/s}, d = 10.0 , \text{m}[/katex]. |
4 | [katex]v = 23.84 , \text{m/s}[/katex] | Velocity after sliding 10.0 meters |
Distance traveled by the combined system (2 blocks and the bullet)
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]m_1v_1 + m_2v_2 = (m_1 + m_2)v'[/katex] | Conservation of momentum for the collision between the bullet-block system and the second block, where [katex]m_1[/katex] and [katex]v_1[/katex] are the mass and velocity of the bullet-block system, [katex]m_2[/katex] and [katex]v_2[/katex] are the mass and velocity of the second block, and [katex]v'[/katex] is the final velocity of the combined system. |
2 | [katex]v’ = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}[/katex] | Solve for [katex]v'[/katex]. Given: [katex]m_1 = 0.585 , \text{kg}, v_1 = 23.84 , \text{m/s}, m_2 = 2.50 , \text{kg}, v_2 = 0 , \text{m/s}[/katex]. |
3 | [katex]0 = v’^2 + 2ad[/katex] | Kinematic equation for motion under constant acceleration when the final velocity is 0. |
4 | [katex]d = \frac{-v’^2}{2a}[/katex] | Solve for [katex]d[/katex]. The acceleration [katex]a[/katex] remains [katex]-\mu_k g[/katex] as before. |
5 | [katex]v’ = 4.52 , \text{m/s}[/katex] | Final velocity of the combined system after the second collision |
6 | [katex]d = 2.60 , \text{m}[/katex] | Distance traveled by the combined system before stopping. |
Just ask: "Help me solve this problem."
A 0.10-kg ball, traveling horizontally at 25 m/s, strikes a wall and rebounds at 19 m/s. What is the magnitude of the change in the momentum of the ball during the rebound?
A big bird has a mass of about 0.021 kg. Suppose it does 0.36 J of work against gravity, so that it ascends straight up with a net acceleration of 0.625 m/s2. How far up does it move?
In which of the following is the rate of change of the particle’s momentum zero?
An object of mass 2 kg is thrown vertically downwards with an initial kinetic energy of 100 J. What is the distance fallen by the object at the instant when its kinetic energy has doubled?
A 3800 kg open railroad car coasts along with a constant speed of 8.60 m/s along a level track. Snow begins to fall vertically and fills the car at rate of 3.50 kg/min. Ignoring friction with the tracks, what is the speed of the car after 90 min?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.