AP Physics

Unit 3 - Circular Motion

Advanced

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

For the banked curve, the centripetal force necessary to make the turn is provided by the horizontal component of the normal force. When a car travels faster than the design speed, additional centripetal force must be provided by friction.

The centripetal force required for a car traveling at speed [katex]v[/katex] on a curve of radius [katex]R[/katex] is [katex]F_c = \frac{mv^2}{R}[/katex]. The component of the normal force providing this centripetal force on a banked curve without friction is [katex]F_{c0} = \frac{mv_0^2}{R}[/katex].

The additional centripetal force required due to the increased speed must be provided by static friction [katex]f_s[/katex], which is [katex]\mu_s N[/katex], where [katex]N[/katex] is the normal force and [katex]\mu_s[/katex] is the coefficient of static friction.

Step Formula / Derivation Reasoning
1 [katex]F_{c0} = \frac{mv_0^2}{R}[/katex] Centripetal force for design speed.
2 [katex]F_{c} = \frac{mv^2}{R}[/katex] Centripetal force for actual speed.
3 [katex]f_s = F_{c} – F_{c0}[/katex] Additional force required from static friction.
4 [katex]f_s = \mu_s N[/katex] Static friction force.
5 [katex]N = mg \cos(\theta)[/katex] Normal force on banked curve, where [katex]\theta[/katex] is the banking angle.
6 [katex]\tan(\theta) = \frac{v_0^2}{Rg}[/katex] Relationship for a banked curve without friction.
7 [katex]\mu_s = \frac{f_s}{N}[/katex] Coefficient of static friction.
8 [katex]\mu_s = \frac{F_{c} – F_{c0}}{mg \cos(\theta)}[/katex] Combine steps 3, 4, and 5.
9 [katex]\mu_s = \frac{\frac{mv^2}{R} – \frac{mv_0^2}{R}}{mg \cos(\theta)}[/katex] Substitute [katex]F_{c}[/katex] and [katex]F_{c0}[/katex] from steps 1 and 2.
10 [katex]\mu_s = \frac{v^2 – v_0^2}{Rg \cos(\theta)}[/katex] Mass [katex]m[/katex] cancels out.
11 [katex]\mu_s = \frac{53^2 – 40^2}{125 \cdot 9.8 \cdot \cos(\theta)}[/katex] Substitute values for [katex]v[/katex], [katex]v_0[/katex], and [katex]R[/katex].
12 [katex]\mu_s = \frac{2809 – 1600}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] Square the speeds.
13 [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] Subtract the squares.
14 [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \frac{40^2}{125 \cdot 9.8}}[/katex] Substitute [katex]\cos(\theta)[/katex] from step 6.
15 [katex]\mu_s = \frac{1209 \cdot 125}{1225 \cdot 40^2}[/katex] Simplify.
16 [katex]\boxed{\mu_s = \frac{1209}{1960}}[/katex] Final calculation for [katex]\mu_s[/katex].

The coefficient of static friction required is approximately [katex]\frac{1209}{1960}[/katex], which can be simplified further if needed.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

[katex]\frac{1209}{1960} \approx .61 [/katex]

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

Physics is Hard, But It Doesn't Have to Be

We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher. 

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Feeling uneasy about your next physics test? We help boost grades in 3 lesson or less.

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.