0 attempts
0% avg
UBQ Credits
For the banked curve, the centripetal force necessary to make the turn is provided by the horizontal component of the normal force. When a car travels faster than the design speed, additional centripetal force must be provided by friction.
The centripetal force required for a car traveling at speed [katex]v[/katex] on a curve of radius [katex]R[/katex] is [katex]F_c = \frac{mv^2}{R}[/katex]. The component of the normal force providing this centripetal force on a banked curve without friction is [katex]F_{c0} = \frac{mv_0^2}{R}[/katex].
The additional centripetal force required due to the increased speed must be provided by static friction [katex]f_s[/katex], which is [katex]\mu_s N[/katex], where [katex]N[/katex] is the normal force and [katex]\mu_s[/katex] is the coefficient of static friction.
Step | Formula / Derivation | Reasoning |
---|---|---|
1 | [katex]F_{c0} = \frac{mv_0^2}{R}[/katex] | Centripetal force for design speed. |
2 | [katex]F_{c} = \frac{mv^2}{R}[/katex] | Centripetal force for actual speed. |
3 | [katex]f_s = F_{c} – F_{c0}[/katex] | Additional force required from static friction. |
4 | [katex]f_s = \mu_s N[/katex] | Static friction force. |
5 | [katex]N = mg \cos(\theta)[/katex] | Normal force on banked curve, where [katex]\theta[/katex] is the banking angle. |
6 | [katex]\tan(\theta) = \frac{v_0^2}{Rg}[/katex] | Relationship for a banked curve without friction. |
7 | [katex]\mu_s = \frac{f_s}{N}[/katex] | Coefficient of static friction. |
8 | [katex]\mu_s = \frac{F_{c} – F_{c0}}{mg \cos(\theta)}[/katex] | Combine steps 3, 4, and 5. |
9 | [katex]\mu_s = \frac{\frac{mv^2}{R} – \frac{mv_0^2}{R}}{mg \cos(\theta)}[/katex] | Substitute [katex]F_{c}[/katex] and [katex]F_{c0}[/katex] from steps 1 and 2. |
10 | [katex]\mu_s = \frac{v^2 – v_0^2}{Rg \cos(\theta)}[/katex] | Mass [katex]m[/katex] cancels out. |
11 | [katex]\mu_s = \frac{53^2 – 40^2}{125 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Substitute values for [katex]v[/katex], [katex]v_0[/katex], and [katex]R[/katex]. |
12 | [katex]\mu_s = \frac{2809 – 1600}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Square the speeds. |
13 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Subtract the squares. |
14 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \frac{40^2}{125 \cdot 9.8}}[/katex] | Substitute [katex]\cos(\theta)[/katex] from step 6. |
15 | [katex]\mu_s = \frac{1209 \cdot 125}{1225 \cdot 40^2}[/katex] | Simplify. |
16 | [katex]\boxed{\mu_s = \frac{1209}{1960}}[/katex] | Final calculation for [katex]\mu_s[/katex]. |
The coefficient of static friction required is approximately [katex]\frac{1209}{1960}[/katex], which can be simplified further if needed.
Just ask: "Help me solve this problem."
A conical pendulum is formed by attaching a ball of mass \( m \) to a string of length \( \ell \), then allowing the ball to move in a horizontal circle of radius \( r \). The following figure shows that the string traces out the surface of a cone, hence the name.
A discus is held at the end of an arm that starts at rest. The average angular acceleration of [katex]54 \, \text{rad/s}^2 [/katex] lasts for 0.25 s. The path is circular and has radius 1.1 m.
Note: A discuss is a heavy, flattened circular object for throwing.
An Olympic bobsled team goes through a horizontal curve at a speed of \( 120 \) \( \text{km/hr} \). If the radius of curvature is \( 10.0 \) \( \text{m} \), what is the apparent weight the crew experiences—express in terms of \( mg \)?
Which of the following do not affect the maximum speed that a car can drive in a circle? Choose both correct answers.
A ball of mass m is fastened to a string. The ball swings at constant speed in a vertical circle of radius R with the other end of the string held fixed. Neglecting air resistance, what is the difference between the string’s tension at the bottom of the circle and at the top of the circle?
[katex]\frac{1209}{1960} \approx .61 [/katex]
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.