0 attempts
0% avg
UBQ Credits
For the banked curve, the centripetal force necessary to make the turn is provided by the horizontal component of the normal force. When a car travels faster than the design speed, additional centripetal force must be provided by friction.
The centripetal force required for a car traveling at speed [katex]v[/katex] on a curve of radius [katex]R[/katex] is [katex]F_c = \frac{mv^2}{R}[/katex]. The component of the normal force providing this centripetal force on a banked curve without friction is [katex]F_{c0} = \frac{mv_0^2}{R}[/katex].
The additional centripetal force required due to the increased speed must be provided by static friction [katex]f_s[/katex], which is [katex]\mu_s N[/katex], where [katex]N[/katex] is the normal force and [katex]\mu_s[/katex] is the coefficient of static friction.
| Step | Formula / Derivation | Reasoning |
|---|---|---|
| 1 | [katex]F_{c0} = \frac{mv_0^2}{R}[/katex] | Centripetal force for design speed. |
| 2 | [katex]F_{c} = \frac{mv^2}{R}[/katex] | Centripetal force for actual speed. |
| 3 | [katex]f_s = F_{c} – F_{c0}[/katex] | Additional force required from static friction. |
| 4 | [katex]f_s = \mu_s N[/katex] | Static friction force. |
| 5 | [katex]N = mg \cos(\theta)[/katex] | Normal force on banked curve, where [katex]\theta[/katex] is the banking angle. |
| 6 | [katex]\tan(\theta) = \frac{v_0^2}{Rg}[/katex] | Relationship for a banked curve without friction. |
| 7 | [katex]\mu_s = \frac{f_s}{N}[/katex] | Coefficient of static friction. |
| 8 | [katex]\mu_s = \frac{F_{c} – F_{c0}}{mg \cos(\theta)}[/katex] | Combine steps 3, 4, and 5. |
| 9 | [katex]\mu_s = \frac{\frac{mv^2}{R} – \frac{mv_0^2}{R}}{mg \cos(\theta)}[/katex] | Substitute [katex]F_{c}[/katex] and [katex]F_{c0}[/katex] from steps 1 and 2. |
| 10 | [katex]\mu_s = \frac{v^2 – v_0^2}{Rg \cos(\theta)}[/katex] | Mass [katex]m[/katex] cancels out. |
| 11 | [katex]\mu_s = \frac{53^2 – 40^2}{125 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Substitute values for [katex]v[/katex], [katex]v_0[/katex], and [katex]R[/katex]. |
| 12 | [katex]\mu_s = \frac{2809 – 1600}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Square the speeds. |
| 13 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Subtract the squares. |
| 14 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \frac{40^2}{125 \cdot 9.8}}[/katex] | Substitute [katex]\cos(\theta)[/katex] from step 6. |
| 15 | [katex]\mu_s = \frac{1209 \cdot 125}{1225 \cdot 40^2}[/katex] | Simplify. |
| 16 | [katex]\boxed{\mu_s = \frac{1209}{1960}}[/katex] | Final calculation for [katex]\mu_s[/katex]. |
The coefficient of static friction required is approximately [katex]\frac{1209}{1960}[/katex], which can be simplified further if needed.
Just ask: "Help me solve this problem."

An object of mass \( m = 3.0 \) \( \text{kg} \) is attached to one end of a string with negligible mass and length \( L = 0.80 \) \( \text{m} \). The object is released from rest at time \( t = 0 \), when the string is horizontal. At time \( t = t_1 \) the object is at the location shown in the figure, where the string is vertical. Which of the following is most nearly the magnitude of the tension in the string at time \( t = t_1 \)?
A car moves at constant speed in a circle of radius 75 m on a horizontal road. The coefficient of static friction is 0.62. Find the maximum speed the car can go without sliding.
A rock is whirled on the end of a string in a horizontal circle of radius \(R\) with a constant period \(T\). If the radius of the circle is reduced to \(R/3\), while the period remains \(T\), what happens to the centripetal acceleration (\(a_c\)) of the rock?
An object moves at constant speed in a circular path of radius \( r \) at a rate of \( 1 \) revolution per second. What is its acceleration in terms of \(r\)?
Which of the following do not affect the maximum speed that a car can drive in a circle? Choose both correct answers.
[katex]\frac{1209}{1960} \approx .61 [/katex]
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?