0 attempts
0% avg
For the banked curve, the centripetal force necessary to make the turn is provided by the horizontal component of the normal force. When a car travels faster than the design speed, additional centripetal force must be provided by friction.
The centripetal force required for a car traveling at speed [katex]v[/katex] on a curve of radius [katex]R[/katex] is [katex]F_c = \frac{mv^2}{R}[/katex]. The component of the normal force providing this centripetal force on a banked curve without friction is [katex]F_{c0} = \frac{mv_0^2}{R}[/katex].
The additional centripetal force required due to the increased speed must be provided by static friction [katex]f_s[/katex], which is [katex]\mu_s N[/katex], where [katex]N[/katex] is the normal force and [katex]\mu_s[/katex] is the coefficient of static friction.
| Step | Formula / Derivation | Reasoning |
|---|---|---|
| 1 | [katex]F_{c0} = \frac{mv_0^2}{R}[/katex] | Centripetal force for design speed. |
| 2 | [katex]F_{c} = \frac{mv^2}{R}[/katex] | Centripetal force for actual speed. |
| 3 | [katex]f_s = F_{c} – F_{c0}[/katex] | Additional force required from static friction. |
| 4 | [katex]f_s = \mu_s N[/katex] | Static friction force. |
| 5 | [katex]N = mg \cos(\theta)[/katex] | Normal force on banked curve, where [katex]\theta[/katex] is the banking angle. |
| 6 | [katex]\tan(\theta) = \frac{v_0^2}{Rg}[/katex] | Relationship for a banked curve without friction. |
| 7 | [katex]\mu_s = \frac{f_s}{N}[/katex] | Coefficient of static friction. |
| 8 | [katex]\mu_s = \frac{F_{c} – F_{c0}}{mg \cos(\theta)}[/katex] | Combine steps 3, 4, and 5. |
| 9 | [katex]\mu_s = \frac{\frac{mv^2}{R} – \frac{mv_0^2}{R}}{mg \cos(\theta)}[/katex] | Substitute [katex]F_{c}[/katex] and [katex]F_{c0}[/katex] from steps 1 and 2. |
| 10 | [katex]\mu_s = \frac{v^2 – v_0^2}{Rg \cos(\theta)}[/katex] | Mass [katex]m[/katex] cancels out. |
| 11 | [katex]\mu_s = \frac{53^2 – 40^2}{125 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Substitute values for [katex]v[/katex], [katex]v_0[/katex], and [katex]R[/katex]. |
| 12 | [katex]\mu_s = \frac{2809 – 1600}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Square the speeds. |
| 13 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Subtract the squares. |
| 14 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \frac{40^2}{125 \cdot 9.8}}[/katex] | Substitute [katex]\cos(\theta)[/katex] from step 6. |
| 15 | [katex]\mu_s = \frac{1209 \cdot 125}{1225 \cdot 40^2}[/katex] | Simplify. |
| 16 | [katex]\boxed{\mu_s = \frac{1209}{1960}}[/katex] | Final calculation for [katex]\mu_s[/katex]. |
The coefficient of static friction required is approximately [katex]\frac{1209}{1960}[/katex], which can be simplified further if needed.
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
A concrete highway curve of radius \(60.0 \, \text{m}\) is banked at a \(12.0^\circ\) angle. What is the maximum speed with which a \(1300 \, \text{kg}\) rubber-tired car can take this curve without sliding? (Take the static coefficient of friction of rubber on concrete to be \(1.0\).)
Find the escape speed from a planet of mass \(6.89 \times 10^{25} \, \text{kg}\) and radius \(6.2 \times 10^{6} \, \text{m}\).

A roller coaster ride at an amusement park lifts a car of mass \( 700 \, \text{kg} \) to point \( A \) at a height of \( 90 \, \text{m} \) above the lowest point on the track, as shown above. The car starts from rest at \( A \), rolls with negligible friction down the incline and follows the track around a loop of radius \( 20 \, \text{m} \). Point \( B \), the highest point on the loop, is at a height of \( 50 \, \text{m} \) above the lowest point on the track.
A satellite in circular orbit around the Earth moves at constant speed. This orbit is maintained by the force of gravity between the Earth and the satellite, yet no work is done on the satellite. How is this possible?
An \(80 \, \text{kg}\) person sits on a swing ride that moves in a horizontal circle. The swing is suspended by a chain of length \(8 \, \text{m}\). While in motion, the chain makes a \(40^\circ\) angle with the horizontal. What is the speed of the person?
A \(2.2 \times 10^{21} \, \text{kg}\) moon orbits a distant planet in a circular orbit of radius \(1.5 \times 10^8 \, \text{m}\). It experiences a \(1.1 \times 10^{19} \, \text{N}\) gravitational pull from the planet. What is the moon’s orbital period in Earth days?
A centripetal force of \( 5.0 \) newtons is applied to a rubber stopper moving at a constant speed in a horizontal circle. If the same force is applied, but the radius is made smaller, what happens to the speed, \( v \), and the frequency, \( f \), of the stopper?
Why do pilots sometimes black out while pulling out at the bottom of a dive?
In 2014, the European Space Agency placed a satellite in orbit around comet 67P/Churyumov-Gerasimenko and then landed a probe on the surface. The actual orbit was elliptical, but we can approximate it as a 50 km diameter circular orbit with a period of 11 days.
A ball is attached to the end of a string. It is swung in a vertical circle of radius \( 2.5 \) \( \text{m} \). What is the minimum velocity that the ball must have at the top to make it around the circle?
[katex]\frac{1209}{1960} \approx .61 [/katex]
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?