0 attempts
0% avg
UBQ Credits
# Part (a): Time Elapsed from Leaving the Table to Hitting the Floor
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] t = \sqrt{\frac{2h}{g}} [/katex] | Since the motion in the y-direction is a free fall, we use the kinematic equation [katex] y = \frac{1}{2}gt^2 [/katex] for the vertical motion. Solving for [katex] t [/katex] gives the time it takes to fall a distance [katex] h [/katex]. |
# Part (b): Horizontal Component of the Velocity of the Block Just Before It Hits the Floor
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] v_x = \frac{D}{t} [/katex] | Using the result from part (a) and substituting [katex] t = \sqrt{\frac{2h}{g}} [/katex], we get [katex] v_x = \frac{D}{\sqrt{\frac{2h}{g}}} = \sqrt{\frac{D^2g}{2h}} [/katex]. This is the velocity necessary to cover horizontal distance [katex] D [/katex] in time [katex] t [/katex]. |
2 | [katex] v_x = \frac{D}{\sqrt{\frac{2h}{g}}} [/katex] | Replace [katex] t [/katex] with the equation found in part a. |
# Part (c): Work Done on the Block by the Spring
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] El = KE [/katex] | The work done by the spring (elastic energy) is transforms into kinetic energy. Since we found the velocity in the previous part we can solve for the kinetic energy. |
2 | [katex] El = KE = \frac{1}{2}mv^2[/katex] | Formula for kinetic energy |
3 | [katex] KE = \frac{1}{2} m \left(\frac{D}{\sqrt{\frac{2h}{g}}}\right)^2 [/katex] | Substitute in velocity found from previous step. |
4 | [katex] KE = \frac{mgD^2}{4h}[/katex] | Simplify equation. Note that the Kinetic energy is the work done by the spring. |
# Part (d): Spring Constant
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] \frac{1}{2}kx^2 = \frac{1}{2}mv^2 [/katex] | The spring energy ([katex]EL[/katex]) is equal to the kinetic energy as mentioned in part c. Hence we can set [katex] EL = KE [/katex] and solve for [katex]k[/katex]. |
2 | [katex] k = \frac{mv^2}{x^2}[/katex] | Solve for k |
3 | [katex] k = \frac{m \left(\frac{D}{\sqrt{\frac{2h}{g}}}\right)^2}{x^2} [/katex] | Substitute in the [katex] v [/katex], to get the final equation in terms of [katex] M, x, D, h, [/katex] |
4 | [katex] k = \frac{mD^2 g}{2hx^2} [/katex] | Simplify |
These steps address each part of the query based on principles of mechanics, conservation of energy, and kinematic equations.
Just ask: "Help me solve this problem."
A bullet of mass 0.0500 kg traveling at 50.0 m/s is fired horizontally into a wooden block suspended from a long rope. The mass of the wooden block is 0.300 kg and it is initially at rest. The collision is completely inelastic and after impact the bullet+ wooden block move together until the center of mass of the system rises a vertical distance h above its initial position.
The diagram above shows a marble rolling down an incline, the bottom part of which has been bent into a loop. The marble is released from point A at a height of 0.80 m above the ground. Point B is the lowest point and point C the highest point of the loop. The diameter of the loop is 0.35 m. The mass of the marble is 0.050 kg. Friction forces and any gain in kinetic energy due to the rotating of the marble can be ignored. When answering the following questions, consider the marble when it is at point C.
The elliptical orbit of a comet is shown above. Positions 1 and 2 are, respectively, the farthest and nearest positions to the Sun, and at position 1 the distance from the comet to the Sun is 10 times that at position 2. At position 2, the comet’s kinetic energy is
How does the time t1 of a block m reaching the bottom of slide 1 compare with t2, the time taken block of mass 2m to reach the end of slide 2 that’s curved? The blocks are released from the same height.
A force F is exerted by a broom handle on the head of a broom, which has a mass m. The handle is at an angle θ to the horizontal. The work done by the force on the head of the broom as it moves a distance d across a horizontal floor is:
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.