0 attempts
0% avg
UBQ Credits
# Part (a): Time Elapsed from Leaving the Table to Hitting the Floor
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] t = \sqrt{\frac{2h}{g}} [/katex] | Since the motion in the y-direction is a free fall, we use the kinematic equation [katex] y = \frac{1}{2}gt^2 [/katex] for the vertical motion. Solving for [katex] t [/katex] gives the time it takes to fall a distance [katex] h [/katex]. |
# Part (b): Horizontal Component of the Velocity of the Block Just Before It Hits the Floor
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] v_x = \frac{D}{t} [/katex] | Using the result from part (a) and substituting [katex] t = \sqrt{\frac{2h}{g}} [/katex], we get [katex] v_x = \frac{D}{\sqrt{\frac{2h}{g}}} = \sqrt{\frac{D^2g}{2h}} [/katex]. This is the velocity necessary to cover horizontal distance [katex] D [/katex] in time [katex] t [/katex]. |
2 | [katex] v_x = \frac{D}{\sqrt{\frac{2h}{g}}} [/katex] | Replace [katex] t [/katex] with the equation found in part a. |
# Part (c): Work Done on the Block by the Spring
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] El = KE [/katex] | The work done by the spring (elastic energy) is transforms into kinetic energy. Since we found the velocity in the previous part we can solve for the kinetic energy. |
2 | [katex] El = KE = \frac{1}{2}mv^2[/katex] | Formula for kinetic energy |
3 | [katex] KE = \frac{1}{2} m \left(\frac{D}{\sqrt{\frac{2h}{g}}}\right)^2 [/katex] | Substitute in velocity found from previous step. |
4 | [katex] KE = \frac{mgD^2}{4h}[/katex] | Simplify equation. Note that the Kinetic energy is the work done by the spring. |
# Part (d): Spring Constant
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] \frac{1}{2}kx^2 = \frac{1}{2}mv^2 [/katex] | The spring energy ([katex]EL[/katex]) is equal to the kinetic energy as mentioned in part c. Hence we can set [katex] EL = KE [/katex] and solve for [katex]k[/katex]. |
2 | [katex] k = \frac{mv^2}{x^2}[/katex] | Solve for k |
3 | [katex] k = \frac{m \left(\frac{D}{\sqrt{\frac{2h}{g}}}\right)^2}{x^2} [/katex] | Substitute in the [katex] v [/katex], to get the final equation in terms of [katex] M, x, D, h, [/katex] |
4 | [katex] k = \frac{mD^2 g}{2hx^2} [/katex] | Simplify |
These steps address each part of the query based on principles of mechanics, conservation of energy, and kinematic equations.
Just ask: "Help me solve this problem."
A 0.2 kg object is attached to a horizontal spring undergoes SHM with the total energy of 0.4 J. The kinetic energy as a function of position presented by the graph.
An eagle is flying horizontally at \(6 \, \text{m/s}\) with a fish in its claws. It accidentally drops the fish.
A bullet moving with an initial speed of [katex] v_o [/katex] strikes and embeds itself in a block of wood which is suspended by a string, causing the bullet and block to rise to a maximum height [katex] h [/katex]. Which of the following statements is true of the collision.
An object at rest suddenly explodes into two fragments (m1 and m2) by an explosion. Fragment m1 acquires 3 times the kinetic energy of the other. What is the ratio of m1 to m2?
An airplane with a speed of \( 97.5 \, \text{m/s} \) is climbing upward at an angle of \( 50.0^\circ \) with respect to the horizontal. When the plane’s altitude is \( 732 \, \text{m} \), the pilot releases a package.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.