New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

AP Physics

Unit 4 - Energy

MCQ
Conceptual
Intermediate

Pro Tier

Unlimited Grading Credits, Explanations, and AI Assist

0 attempts

0% avg

Explanation 0
0
Step Derivation/Formula Reasoning
1 [katex]v^2 = v_0^2 + 2gh[/katex] This is the formula for the final speed [katex] v [/katex] of the stone in terms of the initial speed [katex] v_0 [/katex], acceleration due to gravity [katex] g [/katex], and the height [katex] h [/katex] from which the stone is released, based on the equations of motion under constant acceleration.
2 [katex]v = \sqrt{v_0^2 + 2gh}[/katex] From the formula for the final speed squared, solve for [katex] v [/katex] by taking the square root on both sides.
3 Analysis for Case A: [katex]v_A = \sqrt{(v_0)^2 + 2gh}[/katex] In Case A, the stone is thrown straight up. As it falls back down, it passes the release point with speed [katex] v_0 [/katex] (directed downwards), then continues to accelerate due to gravity.
4 Analysis for Case B: [katex]v_B = \sqrt{(v_0)^2 + 2gh}[/katex] In Case B, the stone is thrown straight down, adding to the initial kinetic energy as it continues to accelerate due to gravity.
5 Analysis for Case C: [katex]v_C = \sqrt{(v_0)^2 + 2gh}[/katex] In Case C, the stone is thrown at an angle. The vertical component of the initial velocity contributes to reaching a maximum height, then it falls back gaining speed, reaching the same speed at height [katex] h [/katex] due to symmetry of projectile motion under gravity.
6 Analysis for Case D: [katex]v_D = \sqrt{(v_0)^2 + 2gh}[/katex] In Case D, the stone is thrown horizontally. It means it has no initial vertical velocity component, but it gains vertical velocity solely due to gravity as it falls.
7 Comparison of [katex] v_A, v_B, v_C, [/katex] and [katex] v_D [/katex] All expressions for the final velocities in different cases turn out to be identical when hitting the water, since in each case, the vertical motion is independent of the horizontal motion, and each starts at the same initial vertical speed relative to the bridge (point considered zero velocity vertically for cases C and D).
8 The speed will be greatest Since [katex] v_A = v_B = v_C = v_D [/katex], the speed of the stone when it hits the water will be the same in all cases, option (e).

This analysis clearly shows that regardless of the direction in which the stone is thrown (if air resistance is ignored), given the same release conditions in terms of speed, the final speed just before impact will be the same.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

We'll help clarify entire units in one hour or less — guaranteed.

NEW AI Quiz Builder

Be the first to use our new Quiz platform to create and grade quizzes from scratch. Join the waitlist and we'll email you for early access.

Go Pro to remove ads + unlimited access to our AI learning tools.

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

Metric Prefixes

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!

Phy Pro

One price to unlock most advanced version of Phy across all our tools.

$11.99

per month

Billed Monthly. Cancel Anytime.

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.

Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.