0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
(a) Accelerarion of the particle when its displacement is 6 m | ||
1 | \[F = ma\] | Newton’s second law relates force \( F \), mass \( m \), and acceleration \( a \). |
2 | \[a = \frac{F}{m}\] | Rearrange the formula to solve for acceleration. |
3 | \[a = \frac{4\, \text{N}}{0.20\, \text{kg}}\] | Substitute the force from the graph (4 N) and the mass (0.20 kg). |
4 | \[a = 20\, \text{m/s}^2\] | Calculate the acceleration. |
(b) Time taken for the object to be displaced the first 12 m | ||
1 | \[\Delta x = v_i t + \frac{1}{2} a t^2\] | Using the kinematic equation with initial velocity \( v_i = 0 \). |
2 | \[12 = \frac{1}{2} \cdot 20 \cdot t^2\] | Substitute \( \Delta x = 12 \) m and \( a = 20 \text{ m/s}^2 \). |
3 | \[12 = 10 t^2\] | Simplify the equation. |
4 | \[t^2 = 1.2\] | Divide both sides by 10. |
5 | \[t = \sqrt{1.2}\] | Solve for \( t \). |
6 | \[t \approx 1.095\, \text{s}\] | Calculate the time taken. |
(c) The amount of work done by the net force in displacing the object the first 12 m | ||
1 | \[W = F \Delta x\] | Work done \( W \) is the product of force and displacement. |
2 | \[W = 4 \times 12\] | Substitute \( F = 4 \text{ N} \) and \( \Delta x = 12 \text{ m} \). |
3 | \[W = 48 \text{ J}\] | Calculate the work done. |
(d) The speed of the object at displacement \( x = 12 \text{ m} \) | ||
1 | \[v_x^2 = v_i^2 + 2a \Delta x\] | Use the kinematic equation with initial velocity \( v_i = 0 \). |
2 | \[v_x^2 = 0 + 2 \cdot 20 \cdot 12\] | Substitute \( a = 20 \text{ m/s}^2 \) and \( \Delta x = 12 \text{ m} \). |
3 | \[v_x^2 = 480\] | Calculate \( v_x^2 \). |
4 | \[v_x = \sqrt{480}\] | Solve for \( v_x \). |
5 | \[v_x \approx 21.9 \, \text{m/s}\] | Calculate the velocity. |
(e) The final speed of the object at displacement \( x = 20 \text{ m} \) | ||
1 | \[W_{total} = W_{1} + W_{2}\] | Calculate total work done by summing areas under the \( F \) vs. \( x \) graph. |
2 | \[W_{1} = F_{1} \times \Delta x_{1} = 4 \times 12 = 48 \, \text{J}\] | The work done on the first section (rectangle 0 to 12 m). |
3 | \[W_{2} = \frac{1}{2} \cdot 4 \cdot 8 = 16 \, \text{J}\] | The work done on the second section (triangular area from 12 m to 20 m). |
4 | \[W_{total} = 48 + 16 = 64 \, \text{J}\] | Total work done. |
5 | \[\text{K.E.} = \frac{1}{2}m v_x^2\] | Relate total work done to kinetic energy gain. |
6 | \[64 = \frac{1}{2} \cdot 0.20 \cdot v_x^2\] | Substitute \( m = 0.20 \, \text{kg} \). |
7 | \[v_x^2 = 640\] | Solve for \( v_x^2 \). |
8 | \[v_x = \sqrt{640}\] | Solve for \( v_x \). |
9 | \[\boxed{v_x \approx 25.3 \, \text{m/s}}\] | Calculate the final speed at \( x = 20 \text{ m} \). |
Just ask: "Help me solve this problem."
A car can decelerate at \( -3.80 \, \text{m/s}^2 \) without skidding when coming to rest on a level road. What would its deceleration be if the road is inclined at \( 9.3^\circ \) and the car moves uphill? Assume the same static friction coefficient.
The graph above represents the motion of an object traveling in a straight line as a function of time. What is the average speed of the object during the first four seconds? Note the displacemnt from 0 to 4 seconds is 2 meters
How does the speed v1 of a block m reaching the bottom of slide 1 compare with v2, the speed of a block 2m reaching the end of slide 2? The blocks are released from the same height.
Two balls are dropped from the roof of a building. One ball has twice as massive as the other and air resistance is negligible. Just before hitting the ground, the more massive ball has ball ____ the kinetic energy of the less massive ball.
A block of mass m is accelerated across a rough surface by a force of magnitude F exerted at an angle θ above the horizontal. The frictional force between the block and surface is ƒ. Find the acceleration of the block (as an equation).
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.