0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]m_1 = 1.0 \, \text{kg}, \, v_{i1} = 2 \, \text{m/s}[/katex] | Identify the mass and initial velocity of the clay lump. |
2 | [katex]m_2 = 0.5 \, \text{kg}, \, v_{i2} = -4 \, \text{m/s}[/katex] | Identify the mass and initial velocity of the metal sphere. The negative sign indicates it is moving in the opposite direction. |
3 | [katex]v_{\text{f}} = \frac{m_1 v_{i1} + m_2 v_{i2}}{m_1 + m_2}[/katex] | Using conservation of momentum to find the final velocity after collision. Here [katex]m_1[/katex] and [katex]m_2[/katex] are the masses, [katex]v_{i1}[/katex] and [katex]v_{i2}[/katex] are the initial velocities, and [katex]v_{\text{f}}[/katex] is the final velocity. |
4 | [katex]v_{\text{f}} = \frac{(1.0 \, \text{kg})(2 \, \text{m/s}) + (0.5 \, \text{kg})(-4 \, \text{m/s})}{1.0 \, \text{kg} + 0.5 \, \text{kg}}[/katex] | Substitute the given values into the equation. |
5 | [katex]v_{\text{f}} = \frac{2 – 2}{1.5} \, \text{m/s} = 0[/katex] | Calculate the final velocity. The combined mass system comes to rest because the momentum contributions cancel each other out. |
6 | [katex]KE_{\text{combined}} = \frac{1}{2} (m_1 + m_2) v_{\text{f}}^2[/katex] | Calculate the kinetic energy of the combined objects after the collision. [katex]KE[/katex] is kinetic energy, [katex]m_1[/katex] and [katex]m_2[/katex] are the masses, and [katex]v_{\text{f}}[/katex] is the final velocity. |
7 | [katex]KE_{\text{combined}} = \frac{1}{2} (1.0 \, \text{kg} + 0.5 \, \text{kg}) (0)^2 = 0 \, \text{J}[/katex] | Substitute the values and solve. Since the final velocity is zero, the kinetic energy is also zero. |
8 | (d) \( 0 \, \text{J} \) | The kinetic energy of the combined objects after collision is zero, indicating that the system is at rest. |
# Explanation for Incorrect Answers:
Option | Reason |
---|---|
(a) 6 J | Incorrect because it does not consider the direction and combination of velocities properly in the conservation of momentum. |
(b) 4 J | Incorrect as it assumes kinetic energy without correctly solving for [katex]v_{\text{f}}[/katex]. |
(c) 2 J | Incorrect because it disregards that combined velocity is 0 after applying conservation of momentum. |
Just ask: "Help me solve this problem."
A 2,000 kg car collides with a stationary 1,000 kg car. Afterwards, they slide 6 m before coming to a stop. The coefficient of friction between the tires and the road is 0.7. Find the initial velocity of the 2,000 kg car before the collision?
A block with mass m slides at speed [katex] v_0 [/katex] on a smooth surface and hits a stationary block with mass [katex] M [/katex] . They stick together and move at speed [katex] v_0/3 [/katex]. Find [katex] M [/katex] in terms of [katex] m [/katex] .
A 1.0-kg object is moving with a velocity of 6.0 m/s to the right. It collides and sticks to a 2.0-kg object moving with a velocity of 3.0 m/s in the same direction. How much kinetic energy was lost in the collision?
A mechanic pushes a [katex]2500 \, \text{kg}[/katex] car from rest to a final speed [katex]v[/katex] by doing [katex]5.0 \times 10^3 \, \text{J}[/katex] of work on the car. Frictional effect between the car and the ground are negligible. What is the final speed of the car?
A 1000 kg car is traveling east at 20m/s when it collides perfectly inelastically with a northbound 2000 kg car traveling at 15m/s. If the coefficient of kinetic friction is 0.9, how far, and at what angle do the two cars skid before coming to a stop?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.