0 attempts
0% avg
UBQ Credits
To solve the problem of finding the final velocities of both blocks after an elastic collision, we need to use both the conservation of momentum and conservation of kinetic energy principles. The masses and initial velocities will be plugged into these equations to determine the final velocities.
Let:
– [katex] m_1 = 1.5 \, \text{kg} [/katex] (mass of Block 1)
– [katex] m_2 = 0.75 \, \text{kg} [/katex] (mass of Block 2)
– [katex] u_1 = 3 \, \text{m/s} [/katex] (initial velocity of Block 1)
– [katex] u_2 = 0 \, \text{m/s} [/katex] (initial velocity of Block 2, as it is at rest)
– [katex] v_1 [/katex] (final velocity of Block 1)
– [katex] v_2 [/katex] (final velocity of Block 2)
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2 [/katex] | Conservation of momentum equation. In elastic collisions, momentum is conserved before and after the collision. |
2 | [katex] 1.5 \times 3 + 0.75 \times 0 = 1.5 v_1 + 0.75 v_2 [/katex] [katex] 4.5 = 1.5 v_1 + 0.75 v_2 [/katex] |
Substitute known values |
3 | [katex] \frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 [/katex] | Conservation of kinetic energy equation, also conserved in elastic collisions. |
4 | [katex] \frac{1}{2} \times 1.5 \times 3^2 + \frac{1}{2} \times 0.75 \times 0^2 = \frac{1}{2} \times 1.5 \times v_1^2 + \frac{1}{2} \times 0.75 \times v_2^2 [/katex] [katex] 6.75 = 0.75 v_1^2 + 0.375 v_2^2 [/katex] |
Substitute known values |
5 | Solve two equations (from previous steps) simultaneously:
Equation 1: [katex] 4.5 = 1.5 v_1 + 0.75 v_2 [/katex] Equation 2: [katex] 6.75 = 0.75 v_1^2 + 0.375 v_2^2 [/katex] |
Use algebraic methods (substitution, elimination) to solve for [katex] v_1 [/katex] and [katex] v_2 [/katex] from equations from step 2 and step 4. |
6 | After solving: [katex] v_1 = 1 \, \text{m/s} [/katex] [katex] v_2 = 4 \, \text{m/s} [/katex] |
Final solution |
This solution strategy provides the final velocities of each block after the collision, assuming perfectly elastic conditions where both momentum and kinetic energy are conserved.
Just ask: "Help me solve this problem."
The box in the diagram is sliding to the right across a horizontal table, under the influence of the forces shown. Which force(s) is doing negative work on the box?
An object with a mass m = 80 g is attached to a spring with a force constant k = 25 N/m. The spring is stretched 52.0 cm and released from rest. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.
In 3.0 minutes, a ski lift raises 10 skiers at constant speed to a height of 85 m. The ski lift is 55° above the horizontal and the average mass of each skier is 67.5 kg. What is the average power provided by the tension in the cable pulling the lift?
A 4 kg mass is traveling at 10 m/s to the right when it collides inelastically with a stationary 7 kg mass. The 7 kg mass then travels at 2m/s at an angle of 22° below the horizontal. What are the velocity and the angle of the 4 kg mass?
A simple pendulum consists of a bob of mass 1.8 kg attached to a string of length 2.3 m. The pendulum is held at an angle of 30° from the vertical by a light horizontal string attached to a wall, as shown above.
Block 1 (1.5 kg): 1.0 m/s to the right
Block 2 (0.75 kg): 4.0 m/s to the right
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.