0 attempts
0% avg
UBQ Credits
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[m_b v_i = (m_b + M) v_x\] | Linear momentum of the bullet–block system is conserved because the external horizontal forces are negligible. Here \(m_b\) is the bullet mass, \(M\) the block mass, \(v_i\) the bullet’s initial speed, and \(v_x\) the common speed just after impact. |
| 2 | \[v_x = \frac{m_b v_i}{m_b + M}\] | Algebraically solve the previous relation for the unknown \(v_x\). |
| 3 | \[v_x = \frac{0.0500\,\text{kg}\,\times\,50.0\,\text{m/s}}{0.0500\,\text{kg}+0.300\,\text{kg}} = 7.14\,\text{m/s}\] | Substitute the given numerical values: \(m_b = 0.0500\,\text{kg}\), \(M = 0.300\,\text{kg}\), and \(v_i = 50.0\,\text{m/s}\). |
| 4 | \[\boxed{v_x = 7.14\,\text{m/s}}\] | State the final speed of the combined mass immediately after the collision. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[\tfrac12 (m_b+M) v_x^2 = (m_b+M) g h\] | After impact, kinetic energy converts into gravitational potential energy at the highest point; mechanical energy is conserved because non-conservative work is negligible. |
| 2 | \[h = \frac{v_x^2}{2g}\] | Solve the energy equation for vertical rise \(h\); the common mass cancels out. |
| 3 | \[h = \frac{(7.14\,\text{m/s})^2}{2\,(9.80\,\text{m/s}^2)} = 2.60\,\text{m}\] | Insert \(v_x = 7.14\,\text{m/s}\) and \(g = 9.80\,\text{m/s}^2\) to compute the height. |
| 4 | \[\boxed{h = 2.60\,\text{m}}\] | Quote the vertical distance the system rises. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[h = \frac{(m_b v_i)^2}{2g\,(m_b+M)^2}\] | Combine momentum \(m_b v_i=(m_b+M)v_x\) with energy \(h=v_x^2/2g\) to express \(h\) only in terms of parameters \(m_b\) and \(v_i\). |
| 2 | \[h’_v = 4h\] | Doubling \(v_i\) multiplies the numerator of the above expression by \(2^2=4\), while the denominator is unchanged; thus height becomes four times larger. |
| 3 | \[\frac{h’_m}{h}=4\left(\frac{m_b+M}{2m_b+M}\right)^2\] | Replacing \(m_b\) by \(2m_b\) changes both numerator and denominator; the ratio displayed compares the new height to the original. |
| 4 | \[\frac{h’_m}{h}=3.06\,\text{(for given masses)}\] | With \(m_b=0.0500\,\text{kg}\) and \(M=0.300\,\text{kg}\), doubling mass raises height by a factor \(3.06<4\). |
| 5 | \[\boxed{\text{Doubling }v_i\text{ increases }h\text{ the most}}\] | Because height depends on the square of speed but less strongly on bullet mass, option (i) has the greater effect; option (iii) is therefore false. |
Just ask: "Help me solve this problem."
A golf club exerts an average horizontal force of \(1000 \, \text{N}\) on a \(0.045 \, \text{kg}\) golf ball that is initially at rest on the tee. The club is in contact with the ball for \(1.8 \, \text{milliseconds}\). What is the speed of the golf ball just as it leaves the tee?
A pendulum with a period of \( 1 \) \( \text{s} \) on Earth, where the acceleration due to gravity is \( g \), is taken to another planet, where its period is \( 2 \) \( \text{s} \). The acceleration due to gravity on the other planet is most nearly
Why is more fuel required for a spacecraft to travel from the Earth to the Moon than to return from the Moon to the Earth?
When can the motion of a pendulum be modeled as simple harmonic motion?
The efficiency of a pulley system is 55%. The
pulleys are used to raise a mass of 90.0 kg to a height of
5.60 m. What force is exerted on the rope of the pulley
system if the rope is pulled for 22 m in order to raise
the mass to the required height?
\(7.14\,\text{m/s}\)
\(2.60\,\text{m}\)
\(\text{Doubling bullet’s velocity}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?