0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] \vec{r} = 1 \, \text{m} [/katex] | The distance [katex] \vec{r} [/katex] from the pivot point to the point of force application (at the other end of the meter stick, which is 1 meter). |
| 2 | [katex] \vec{F} = 3 \, \text{N} [/katex] | The force [katex] \vec{F} [/katex] applied is 3 N, perpendicular to the meter stick, meaning the angle [katex] \theta [/katex] between [katex] \vec{r} [/katex] and [katex] \vec{F} [/katex] is 90 degrees. |
| 3 | [katex] \tau_F = rF \sin(\theta) [/katex] | Torque [katex] \tau [/katex] is calculated by the formula [katex] rF \sin(\theta) [/katex], where [katex] \theta [/katex] is the angle between the force direction and the line from the pivot to the point where the force is applied. |
| 4 | [katex] \tau_F = 1 \times 3 \times \sin(90^{\circ}) [/katex] | Substitute the values of [katex] r [/katex], [katex] F [/katex], and [katex] \theta [/katex] into the torque formula. Since [katex] \sin(90^{\circ}) = 1 [/katex], the equation simplifies. |
| 5 | [katex] \tau_F = 3 \, \text{Nm} [/katex] | Calculate the torque, which results in [katex] \tau = 3 \, \text{Nm} [/katex]. |
| 6 | [katex] \tau_{meterstick} = .5 \times .2\times g \times \sin(90^{\circ}) [/katex] | Repeat the steps above to find the torque caused by the weight of the meterstick. The force is the weight of the meterstick [katex] F = .2 \times 9.81 [/katex], located at the center of mass [katex] r = .5 [/katex]. |
| 7 | [katex] \tau_{meterstick} = 1 \, \text{Nm} [/katex] | Simplify |
| 8 | [katex] \tau_{net} = \tau_{meterstick} + \tau_F[/katex] | The net torque is the sum of all torques acting on the meterstick. Since all torques rotate the meterstick clockwise we can add them together. |
| 9 | [katex] \tau_net = 3\, \text{Nm} + 1 \, \text{Nm} = 4 \, \text{Nm}[/katex] | [katex] \boxed{4 \, \text{Nm}}[/katex] |
Just ask: "Help me solve this problem."
Which of the following must be true for an object at translational equilibrium?
The moment of inertia of a uniform solid sphere (mass \( M \), radius \( R \)) about a diameter is \( \frac{2}{5}MR^2 \). The sphere is placed on an inclined plane (angle \( \theta \)) and released from rest.
To increase the moment of inertia of a body about an axis, you must
| Wagon | Wheel Structure | Moment of Inertia | Wheel Mass | Wheel Radius |
|---|---|---|---|---|
| Wagon \(A\) | Solid disk | \[\frac{1}{2} M R^2\] | \[ 0.5 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
| Wagon \(B\) | Solid disk | \[\frac{1}{2} M R^2\] | \[ 0.2 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
| Wagon \(C\) | Hollow hoop | \[M R^2\] | \[ 0.1 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
Three wagons have identical total mass (including their wheels) and each has four wheels. However, the wheels on each wagon have different designs with varying mass distributions and radii as shown in a reference chart. When accelerating each wagon from a standstill to \( 10 \) \( \text{m/s} \), which wagon requires the most energy input?
Flywheels (rapidly rotating disks) are widely used in industry for storing energy. They are spun up slowly when extra energy is available, then decelerate quickly when needed to supply a boost of energy. A flywheel, \( 20 \text{ cm} \) in diameter, can spin at \( 20{,}000 \text{ rpm} \).
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?