0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]KE_{\text{initial}} = \frac{1}{2} m v^2[/katex] | Calculate the initial kinetic energy of the vehicle using its speed before it halts. Here [katex]v = 12.3 \text{ m/s}[/katex]. |
2 | [katex]W_{\text{friction}} = f_k \cdot d = \mu_k \cdot m \cdot g \cdot \cos(\theta) \cdot d[/katex] | The work done by friction, where [katex] \mu_k = 0.650[/katex] is the coefficient of kinetic friction, [katex] g = 9.8 \text{ m/s}^2[/katex] is acceleration due to gravity, [katex] \theta = 18^\circ[/katex], and [katex]d[/katex] is the distance the vehicle slides. |
3 | [katex]W_{\text{gravity}} = m \cdot g \cdot \sin(\theta) \cdot d[/katex] | The work done by gravity while the vehicle moves down the incline. |
4 | [katex]KE_{\text{initial}} = W_{\text{friction}} + W_{\text{gravity}}[/katex] | By the work-energy principle, the initial kinetic energy is converted into work done against friction plus the work done by gravity. |
5 | [katex]\frac{1}{2} m v^2 = \mu_k mg\cos(\theta)d + mg\sin(\theta)d[/katex] | Substitute expressions from steps 1, 2, and 3 into the work-energy equation. |
6 | [katex]d = \frac{\frac{1}{2} v^2}{\mu_k g \cos(\theta) + g \sin(\theta)}[/katex] | Solve for [katex]d[/katex], distance the vehicle slides. Notice that mass [katex]m[/katex] cancels out. |
7 | [katex]d = \frac{\frac{1}{2} (12.3)^2}{0.650 \times 9.8 \times \cos(18^\circ) + 9.8 \times \sin(18^\circ)}[/katex] | Substitute numerical values for [katex]v[/katex], [katex]\mu_k[/katex], [katex]g[/katex], and [katex]\theta[/katex] to find the value of [katex]d[/katex] that represents the distance the vehicle slides until it stops. |
8 | [katex]d = 8.32 \,\text{m}[/katex] | Calculated value. |
To solve part b, look at the equation derived in step 6 of part a. Notice that the angle and distance traveled up the incline are inversely proportional. This means the greater the angle [katex] \theta [/katex] the shorter the distance traveled.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]d’ = \frac{\frac{1}{2} v^2}{\mu_k g \cos(27^\circ) + g \sin(27^\circ)}[/katex] | Recalculate the distance with the increased angle of [katex]1.5 \times 18^\circ = 27^\circ[/katex]. |
2 | [katex]d’ = \frac{d}{\cos(27^\circ) + \tan(27^\circ) \cdot \sin(27^\circ)}[/katex] | Using the previous formula of [katex]d[/katex], we express the new sliding distance [katex]d'[/katex] in terms of the old distance [katex]d[/katex]. |
3 | [katex]d’ = 7.41 \, \text{meters}[/katex] | At an angle of [katex]27^\circ[/katex] the vehicale would slide up 7.41 meters, which is less than the orginal dsitance of 8.32 meters. |
3 | [katex]\frac{d’}{d}[/katex] | The ratio [katex]\frac{d’}{d}[/katex] shows how much further the vehicle would slide relative to [katex]d[/katex]. |
4 | [katex]\frac{7.41}{8.32} = .89[/katex] | Thus the new distance [katex]d’ = .89d[/katex] |
Part (c):
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]W_{\text{gravity,up}} = -m \cdot g \cdot \sin(\theta) \cdot d[/katex] | The work done by gravity as the vehicle slides up the incline is negative since gravity opposes the motion. |
2 | [katex]\frac{1}{2} m v^2 = \mu_k m g \cos(\theta) d – m g \sin(\theta) d[/katex] | Work-energy principle applied while moving up. The kinetic energy has to overcome both friction and an upward gravity force. |
3 | [katex]d_{\text{up}} = \frac{\frac{1}{2} v^2}{\mu_k g \cos(\theta) – g \sin(\theta)}[/katex] | Solve for the distance the vehicle would slide up the incline. |
4 | [katex]d_{\text{up}} < d[/katex] | The distance [katex]d_{\text{up}}[/katex] will be lesser than [katex]d[/katex] since gravity now acts against the motion, reducing the sliding distance relative to sliding down. |
Just ask: "Help me solve this problem."
A \( 0.20 \) \( \text{kg} \) object moves along a straight line. The net force acting on the object varies with the object’s displacement as shown in the graph above. The object starts from rest at displacement \( x = 0 \) and time \( t = 0 \) and is displaced a distance of \( 20 \) \( \text{m} \). Determine each of the following.
A box is sliding down an incline at a constant speed of \( 2 \) \( \text{m s}^{-1} \). The angle of the incline is \( \theta \). The magnitude of the total of the opposing forces is \( 16 \) \( \text{N} \). What is the force of gravity acting on the box?
What force would have to be applied to start a 12.3 kg wood block moving on a surface with a static coefficient of friction of 0.438?
A car of mass \( M \) moves around a circularly banked curve on a freeway off-ramp. The off-ramp has a radius of curvature \( R \) and is raised to an angle \( \theta \) from the horizontal. The road is slick, and friction is negligible.
When the brakes of an automobile are applied, the road exerts the greatest retarding force
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.