0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]KE_{\text{initial}} = \frac{1}{2} m v^2[/katex] | Calculate the initial kinetic energy of the vehicle using its speed before it halts. Here [katex]v = 12.3 \text{ m/s}[/katex]. |
2 | [katex]W_{\text{friction}} = f_k \cdot d = \mu_k \cdot m \cdot g \cdot \cos(\theta) \cdot d[/katex] | The work done by friction, where [katex] \mu_k = 0.650[/katex] is the coefficient of kinetic friction, [katex] g = 9.8 \text{ m/s}^2[/katex] is acceleration due to gravity, [katex] \theta = 18^\circ[/katex], and [katex]d[/katex] is the distance the vehicle slides. |
3 | [katex]W_{\text{gravity}} = m \cdot g \cdot \sin(\theta) \cdot d[/katex] | The work done by gravity while the vehicle moves down the incline. |
4 | [katex]KE_{\text{initial}} = W_{\text{friction}} + W_{\text{gravity}}[/katex] | By the work-energy principle, the initial kinetic energy is converted into work done against friction plus the work done by gravity. |
5 | [katex]\frac{1}{2} m v^2 = \mu_k mg\cos(\theta)d + mg\sin(\theta)d[/katex] | Substitute expressions from steps 1, 2, and 3 into the work-energy equation. |
6 | [katex]d = \frac{\frac{1}{2} v^2}{\mu_k g \cos(\theta) + g \sin(\theta)}[/katex] | Solve for [katex]d[/katex], distance the vehicle slides. Notice that mass [katex]m[/katex] cancels out. |
7 | [katex]d = \frac{\frac{1}{2} (12.3)^2}{0.650 \times 9.8 \times \cos(18^\circ) + 9.8 \times \sin(18^\circ)}[/katex] | Substitute numerical values for [katex]v[/katex], [katex]\mu_k[/katex], [katex]g[/katex], and [katex]\theta[/katex] to find the value of [katex]d[/katex] that represents the distance the vehicle slides until it stops. |
8 | [katex]d = 8.32 \,\text{m}[/katex] | Calculated value. |
To solve part b, look at the equation derived in step 6 of part a. Notice that the angle and distance traveled up the incline are inversely proportional. This means the greater the angle [katex] \theta [/katex] the shorter the distance traveled.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]d’ = \frac{\frac{1}{2} v^2}{\mu_k g \cos(27^\circ) + g \sin(27^\circ)}[/katex] | Recalculate the distance with the increased angle of [katex]1.5 \times 18^\circ = 27^\circ[/katex]. |
2 | [katex]d’ = \frac{d}{\cos(27^\circ) + \tan(27^\circ) \cdot \sin(27^\circ)}[/katex] | Using the previous formula of [katex]d[/katex], we express the new sliding distance [katex]d'[/katex] in terms of the old distance [katex]d[/katex]. |
3 | [katex]d’ = 7.41 \, \text{meters}[/katex] | At an angle of [katex]27^\circ[/katex] the vehicale would slide up 7.41 meters, which is less than the orginal dsitance of 8.32 meters. |
3 | [katex]\frac{d’}{d}[/katex] | The ratio [katex]\frac{d’}{d}[/katex] shows how much further the vehicle would slide relative to [katex]d[/katex]. |
4 | [katex]\frac{7.41}{8.32} = .89[/katex] | Thus the new distance [katex]d’ = .89d[/katex] |
Part (c):
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]W_{\text{gravity,up}} = -m \cdot g \cdot \sin(\theta) \cdot d[/katex] | The work done by gravity as the vehicle slides up the incline is negative since gravity opposes the motion. |
2 | [katex]\frac{1}{2} m v^2 = \mu_k m g \cos(\theta) d – m g \sin(\theta) d[/katex] | Work-energy principle applied while moving up. The kinetic energy has to overcome both friction and an upward gravity force. |
3 | [katex]d_{\text{up}} = \frac{\frac{1}{2} v^2}{\mu_k g \cos(\theta) – g \sin(\theta)}[/katex] | Solve for the distance the vehicle would slide up the incline. |
4 | [katex]d_{\text{up}} < d[/katex] | The distance [katex]d_{\text{up}}[/katex] will be lesser than [katex]d[/katex] since gravity now acts against the motion, reducing the sliding distance relative to sliding down. |
Just ask: "Help me solve this problem."
A constant force of 8.0 N is exerted on a 16 kg object initially at rest. How much speed will the object gain after 4 seconds?
The efficiency of a pulley system is 55%. The
pulleys are used to raise a mass of 90.0 kg to a height of
5.60 m. What force is exerted on the rope of the pulley
system if the rope is pulled for 22 m in order to raise
the mass to the required height?
A communications satellite orbits the Earth at an altitude of 35,000 km above the Earth’s surface. Take the mass of Earth to be [katex]6 \times 10^{24} \text{ kg}[/katex] the the radius of Earth to be [katex]6.4 \times 10^6 \text{ m}[/katex]. What is the satellite’s velocity?
A kickball is rolled by the pitcher at a speed of 10 m/s and it is kicked by another student. The kickball deforms a little during the kick, and then rebounds with a velocity of 15 m/s as its shape restores to a perfect sphere. Select all that must be true about the kickball and the kicking foot system.
A 0.5 kg cart, on a frictionless 2 m long table, is being pulled by a 0.1 kg mass connected by a string and hanging over a pulley. The system is released from rest. After the hanging mass falls 0.5 m, calculate the speed of the cart on the table. Use ONLY forces and energy.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.