0 attempts
0% avg
UBQ Credits
To solve part (a), calculate the work performed by the kinetic frictional force acting on the skis.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]KE_i = \frac{1}{2}mv_i^2[/katex] | Calculate the initial kinetic energy (KE) using the mass [katex] m = 58 \, \text{kg} [/katex] and the initial velocity [katex] v_i = 7.2 \, \text{m/s} [/katex]. |
2 | [katex]KE_i = \frac{1}{2} \times 58 \times (7.2)^2 = 1503.36 \, \text{J}[/katex] | Substitute the values into the kinetic energy formula. |
3 | [katex]KE_f = \frac{1}{2}mv_f^2[/katex] | Calculate the final kinetic energy using the final velocity [katex] v_f = 3.8 \, \text{m/s} [/katex]. |
4 | [katex]KE_f = \frac{1}{2} \times 58 \times (3.8)^2 = 418.76 \, \text{J}[/katex] | Substitute the values into the kinetic energy formula. |
5 | [katex]W_{\text{gravity}} = mgh [/katex] | Calculate the work done by gravity, where [katex] h = d \sin(\theta) [/katex] is the height gained climbing the incline. [katex] d = 2.3 \, \text{m} [/katex] and [katex] \theta = 28^\circ [/katex]. |
6 | [katex]h = 2.3 \sin(28^\circ) = 1.08 \, \text{m}[/katex] | Calculate the vertical height climbed using [katex] \sin(28^\circ) \approx 0.4695 [/katex]. |
7 | [katex]W_{\text{gravity}} = 58 \times 9.8 \times 1.080 = 614 \, \text{J}[/katex] | Substitute [katex] g = 9.8 \, \text{m/s}^2 [/katex]. |
8 | [katex] KE_i = KE_f + W_f + PE [/katex] | Place all energy transformation into a single conservation of energy equation: The initial kinetic energy transforms into the final kinetic energy, work done by friction, and the potential energy of the skier. |
9 | [katex]W_f = 1503.36 \, – \, 418.76 \, – \, 614 [/katex] | Plug in all values and solve for work done by friction [katex] W_f [/katex]. |
10 | [katex] W_f = 470.6 \, \text{J}[/katex] | The negative sign indicates that the work done by friction is in the direction opposite to the motion. |
To solve part (b), determine the magnitude of the kinetic frictional force.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]W = f_k \times d \times \cos(\theta)[/katex] | Work done by a force [katex] f_k [/katex] over a distance [katex] d [/katex], where [katex] \theta [/katex] is the angle between the force and the displacement (which in the case of friction, is [katex]180^\circ[/katex]). |
2 | [katex] 470.6 = -f_k \times 2.3 \times \cos(180^\circ)[/katex] | Substitute the work calculated from part (a) and the distance [katex]2.3 \, \text{m}[/katex]. [katex] \cos(180^\circ) = -1 [/katex]. |
3 | [katex] -470.6 = f_k \times 2.3[/katex] | Simplify the equation. |
4 | [katex]f_k = \frac{-470.6}{2.3}[/katex] | Solve for [katex]f_k[/katex]. |
5 | [katex]f_k = -204.6 \, \text{N}[/katex] | The magnitude of the kinetic frictional force. |
Just ask: "Help me solve this problem."
A block sliding down an frictionless inclined plane is experiencing both gravitational and normal forces; which force’s magnitude changes when the angle of the incline is increased?
In the diagram above block A has a mass of 3.2 kg and block B a mass of 2.4 kg. The pulley is frictionless and has no mass.
Two objects (49.0 and 24.0 kg) are connected by a massless string that passes over a massless, frictionless pulley. The pulley hangs from the ceiling. Find the acceleration of the objects and the tension in the string.
A child pushes horizontally on a box of mass m with constant speed v across a rough horizontal floor. The coefficient of friction between the box and the floor is µ. At what rate does the child do work on the box?
A 100 kg person is riding a 10 kg bicycle up a 25° hill. The hill is long and the coefficient of static friction is 0.9. The person rides 10 m up the hill then takes a rest at the top. If she then starts from rest from the top of the hill and rolls down a distance of 7 m before squeezing hard on the brakes locking the wheels. How much work is done by friction to bring the bicycle to a full stop, knowing that the coefficient of kinetic friction is 0.65?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.