0 attempts
0% avg
Solving as a single conservation of energy equation:
| Derivation/Formula | Reasoning |
|---|---|
| \[W_F = F(6)\] | Work done by the applied horizontal force over \(6\,\text{m}\). |
| \[W_{f,h} = \mu_h m g (6)\] | Magnitude of work done by kinetic friction on the horizontal; friction is \(\mu_h m g\) and acts over \(6\,\text{m}\). |
| \[N_i = m g \cos\theta\] | Normal force on the incline is reduced by the angle, giving \(N_i\). |
| \[W_{f,i} = \mu_i m g \cos\theta\, \Delta x\] | Magnitude of work done by kinetic friction on the incline over distance \(\Delta x\). |
| \[U_g = m g\, \Delta x\, \sin\theta\] | Final gravitational potential energy; vertical rise is \(\Delta x\sin\theta\). Final kinetic energy is zero. |
| \[F(6) – \mu_h m g (6) – \mu_i m g \cos\theta\, \Delta x = m g\, \Delta x\, \sin\theta\] | Single energy balance: input work from the horizontal force minus both friction works equals the final gravitational potential energy. |
| \[F(6) – \mu_h m g (6) = m g\,(\sin\theta + \mu_i \cos\theta)\, \Delta x\] | Collect the \(\Delta x\) terms on the right and factor. |
| \[\Delta x = \frac{F(6) – \mu_h m g (6)}{m g\,(\sin\theta + \mu_i \cos\theta)}\] | Algebraic solution for \(\Delta x\). |
| \[\Delta x = \frac{110(6) – 0.25(12)(9.8)(6)}{(12)(9.8)\left(\sin(17^\circ) + 0.45\cos(17^\circ)\right)}\] | Substitute \(F = 110\,\text{N}\), \(\mu_h = 0.25\), \(\mu_i = 0.45\), \(m = 12\,\text{kg}\), \(g = 9.8\,\text{m/s}^2\), \(\theta = 17^\circ\). |
| \[\Delta x = \frac{660 – 176.4}{(12)(9.8)\left(\sin(17^\circ) + 0.45\cos(17^\circ)\right)}\] | Compute the numerator: \(110\times 6 = 660\), \(0.25\times 12\times 9.8\times 6 = 176.4\). |
| \[\sin(17^\circ) \approx 0.2924,\quad \cos(17^\circ) \approx 0.9563\] | Numerical trig values for \(17^\circ\). |
| \[\sin(17^\circ) + 0.45\cos(17^\circ) \approx 0.7227\] | Combine the angle terms in the denominator. |
| \[(12)(9.8)(0.7227) \approx 84.99\] | Evaluate \(m g(\sin\theta + \mu_i\cos\theta)\). |
| \[\Delta x \approx \frac{483.6}{84.99} \approx 5.7\,\text{m}\] | Final numerical evaluation for \(\Delta x\). |
| \[\boxed{\Delta x \approx 5.7\,\text{m}}\] | Distance slid up the incline before stopping. |
Alternatively you can split the motion up into (1) horizontal motion and (2) motion up the incline, then apply conservation of energy to each part to yield the same answer:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[N = m g\] | The normal force on a horizontal surface equals the object’s weight \(m g\). |
| 2 | \[f_k = \mu_k N = \mu_k m g\] | Kinetic friction magnitude is the product of coefficient \(\mu_k\) and normal force. |
| 3 | \[F_{\text{net}} = F_{\text{app}} – f_k\] | Net force equals applied force minus friction (opposite direction). |
| 4 | \[W_{\text{net}} = F_{\text{net}}\, \Delta x\] | Work by the net force over displacement \(\Delta x = 6\,\text{m}\). |
| 5 | \[W_{\text{net}} = \tfrac12 m v_x^2 – \tfrac12 m v_i^2\] | Work–energy theorem; the object starts from rest so \(v_i = 0\). |
| 6 | \[v_x = \sqrt{\frac{2 F_{\text{net}}\, \Delta x}{m}}\] | Solving the work–energy relation for the final speed. |
| 7 | \[v_x = \sqrt{\frac{2 (110\,\text{N} – 0.25\, (12\,\text{kg})(9.8\,\text{m/s}^2)) (6\,\text{m})}{12\,\text{kg}}} \;\approx\; 9.0\,\text{m/s}\] | Numeric substitution gives the speed at the base of the incline. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[KE_{\text{base}} = \tfrac12 m v_x^2\] | Kinetic energy as the object reaches the incline. |
| 2 | \[\Delta PE = m g (\Delta x \sin \theta)\] | Gravitational potential gain on an incline: height is \(\Delta x \sin \theta\). |
| 3 | \[W_{f} = -\mu_k m g \cos \theta \; \Delta x\] | Work done by kinetic friction along the incline (opposite motion). |
| 4 | \[KE_{\text{base}} = \Delta PE + |W_{f}|\] | All initial kinetic energy is dissipated by gravity and friction until rest. |
| 5 | \[\tfrac12 m v_x^2 = m g (\sin \theta + \mu_k \cos \theta) \, \Delta x\] | Combine energy losses (gravity + friction) into a single factor. |
| 6 | \[\Delta x = \frac{\tfrac12 m v_x^2}{m g (\sin \theta + \mu_k \cos \theta)}\] | Algebraic isolation of the distance up the incline. |
| 7 | \[\Delta x = \frac{\tfrac12 (12)(9.0^2)}{(12)(9.8)(\sin 17^\circ + 0.45 \cos 17^\circ)} \;\approx\; \boxed{5.7\,\text{m}}\] | Substituting numbers (\(\sin 17^\circ \approx 0.292\), \(\cos 17^\circ \approx 0.956\)) yields the sliding distance. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
In \(3.0 \, \text{minutes}\), a ski lift raises \(10\) skiers at constant speed to a height of \(85 \, \text{m}\). The ski lift is \(55^\circ\) above the horizontal and the average mass of each skier is \(67.5 \, \text{kg}\). What is the average power provided by the tension in the cable pulling the lift?
A simple pendulum consists of a sphere tied to the end of a string of negligible mass. The sphere is pulled back until the string is horizontal and then released from rest. Assume the gravitational potential energy is zero when the sphere is at its lowest point.
What angle will the string make with the horizontal when the kinetic energy and the potential energy of the sphere-Earth system are equal?
In which one of the following circumstances does the principle of conservation of mechanical energy apply, even though a nonconservative force acts on the moving object?
A 84.4 kg climber is scaling the vertical wall. His safety rope is made of a material that behaves like a spring that has a spring constant of 1.34 x 103 N/m. He accidentally slips and falls 0.627 m before the rope runs out of slack. How much is the rope stretched when it breaks his fall and momentarily brings him to rest?
A spring with a spring constant of \( 50. \) \( \text{N/m} \) is hanging from a stand. A second spring with a spring constant of \( 100. \) \( \text{N/m} \) is hanging from the first spring. How far do they stretch if a \( 0.50 \) \( \text{kg} \) mass is hung from the bottom spring?
The maximum energy a bone can absorb without breaking is surprisingly small. Experimental data show that a leg bone of a healthy, \( 80 \) \( \text{kg} \) human can absorb about \( 240 \) \( \text{J} \). From what maximum height could a \( 80 \) \( \text{kg} \) person jump and land rigidly upright on both feet without breaking their legs? Assume that all energy is absorbed by the leg bones in a rigid landing. Express your answer with the appropriate units.
A \(2,000 \, \text{kg}\) car collides with a stationary \(1,000 \, \text{kg}\) car. Afterwards, they slide \(6 \, \text{m}\) before coming to a stop. The coefficient of friction between the tires and the road is \(0.7\). Find the initial velocity of the \(2,000 \, \text{kg}\) car before the collision?
A stone is falling at a constant velocity vertically down a tube filled with oil. Which of the following statements about the energy changes of the stone during its motion are correct?
I. The gain in kinetic energy is less than the loss in gravitational potential energy.
II. The sum of kinetic and gravitational potential energy of the stone is constant.
III. The work done by the force of gravity has the same magnitude as the work done by friction.
A block of mass [katex] m [/katex] is moving on a horizontal frictionless surface with a speed [katex] v_0 [/katex] as it approaches a block of mass [katex] 2m [/katex] which is at rest and has an ideal spring attached to one side.
When the two blocks collide, the spring is completely compressed and the two blocks momentarily move at the same speed, and then separate again, each continuing to move.
A satellite in circular orbit around the Earth moves at constant speed. This orbit is maintained by the force of gravity between the Earth and the satellite, yet no work is done on the satellite. How is this possible?
\(\Delta x \approx 5.69\,\text{m}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?