New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

AP Physics

Unit 4 - Energy

Advanced

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Solving as a single conservation of energy equation: 

Derivation/Formula Reasoning
\[W_F = F(6)\] Work done by the applied horizontal force over \(6\,\text{m}\).
\[W_{f,h} = \mu_h m g (6)\] Magnitude of work done by kinetic friction on the horizontal; friction is \(\mu_h m g\) and acts over \(6\,\text{m}\).
\[N_i = m g \cos\theta\] Normal force on the incline is reduced by the angle, giving \(N_i\).
\[W_{f,i} = \mu_i m g \cos\theta\, \Delta x\] Magnitude of work done by kinetic friction on the incline over distance \(\Delta x\).
\[U_g = m g\, \Delta x\, \sin\theta\] Final gravitational potential energy; vertical rise is \(\Delta x\sin\theta\). Final kinetic energy is zero.
\[F(6) – \mu_h m g (6) – \mu_i m g \cos\theta\, \Delta x = m g\, \Delta x\, \sin\theta\] Single energy balance: input work from the horizontal force minus both friction works equals the final gravitational potential energy.
\[F(6) – \mu_h m g (6) = m g\,(\sin\theta + \mu_i \cos\theta)\, \Delta x\] Collect the \(\Delta x\) terms on the right and factor.
\[\Delta x = \frac{F(6) – \mu_h m g (6)}{m g\,(\sin\theta + \mu_i \cos\theta)}\] Algebraic solution for \(\Delta x\).
\[\Delta x = \frac{110(6) – 0.25(12)(9.8)(6)}{(12)(9.8)\left(\sin(17^\circ) + 0.45\cos(17^\circ)\right)}\] Substitute \(F = 110\,\text{N}\), \(\mu_h = 0.25\), \(\mu_i = 0.45\), \(m = 12\,\text{kg}\), \(g = 9.8\,\text{m/s}^2\), \(\theta = 17^\circ\).
\[\Delta x = \frac{660 – 176.4}{(12)(9.8)\left(\sin(17^\circ) + 0.45\cos(17^\circ)\right)}\] Compute the numerator: \(110\times 6 = 660\), \(0.25\times 12\times 9.8\times 6 = 176.4\).
\[\sin(17^\circ) \approx 0.2924,\quad \cos(17^\circ) \approx 0.9563\] Numerical trig values for \(17^\circ\).
\[\sin(17^\circ) + 0.45\cos(17^\circ) \approx 0.7227\] Combine the angle terms in the denominator.
\[(12)(9.8)(0.7227) \approx 84.99\] Evaluate \(m g(\sin\theta + \mu_i\cos\theta)\).
\[\Delta x \approx \frac{483.6}{84.99} \approx 5.7\,\text{m}\] Final numerical evaluation for \(\Delta x\).
\[\boxed{\Delta x \approx 5.7\,\text{m}}\] Distance slid up the incline before stopping.

 

Alternatively you can split the motion up into (1) horizontal motion and (2) motion up the incline, then apply conservation of energy to each part to yield the same answer: 

Part 1: Horizontal motion

Step Derivation/Formula Reasoning
1 \[N = m g\] The normal force on a horizontal surface equals the object’s weight \(m g\).
2 \[f_k = \mu_k N = \mu_k m g\] Kinetic friction magnitude is the product of coefficient \(\mu_k\) and normal force.
3 \[F_{\text{net}} = F_{\text{app}} – f_k\] Net force equals applied force minus friction (opposite direction).
4 \[W_{\text{net}} = F_{\text{net}}\, \Delta x\] Work by the net force over displacement \(\Delta x = 6\,\text{m}\).
5 \[W_{\text{net}} = \tfrac12 m v_x^2 – \tfrac12 m v_i^2\] Work–energy theorem; the object starts from rest so \(v_i = 0\).
6 \[v_x = \sqrt{\frac{2 F_{\text{net}}\, \Delta x}{m}}\] Solving the work–energy relation for the final speed.
7 \[v_x = \sqrt{\frac{2 (110\,\text{N} – 0.25\, (12\,\text{kg})(9.8\,\text{m/s}^2)) (6\,\text{m})}{12\,\text{kg}}} \;\approx\; 9.0\,\text{m/s}\] Numeric substitution gives the speed at the base of the incline.

Part 2: Up the incline

Step Derivation/Formula Reasoning
1 \[KE_{\text{base}} = \tfrac12 m v_x^2\] Kinetic energy as the object reaches the incline.
2 \[\Delta PE = m g (\Delta x \sin \theta)\] Gravitational potential gain on an incline: height is \(\Delta x \sin \theta\).
3 \[W_{f} = -\mu_k m g \cos \theta \; \Delta x\] Work done by kinetic friction along the incline (opposite motion).
4 \[KE_{\text{base}} = \Delta PE + |W_{f}|\] All initial kinetic energy is dissipated by gravity and friction until rest.
5 \[\tfrac12 m v_x^2 = m g (\sin \theta + \mu_k \cos \theta) \, \Delta x\] Combine energy losses (gravity + friction) into a single factor.
6 \[\Delta x = \frac{\tfrac12 m v_x^2}{m g (\sin \theta + \mu_k \cos \theta)}\] Algebraic isolation of the distance up the incline.
7 \[\Delta x = \frac{\tfrac12 (12)(9.0^2)}{(12)(9.8)(\sin 17^\circ + 0.45 \cos 17^\circ)} \;\approx\; \boxed{5.7\,\text{m}}\] Substituting numbers (\(\sin 17^\circ \approx 0.292\), \(\cos 17^\circ \approx 0.956\)) yields the sliding distance.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

\(\Delta x \approx 5.69\,\text{m}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Feeling uneasy about your next physics test? We help boost grades in 3 lesson or less.

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.