0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[N = m g\] | The normal force on a horizontal surface equals the object’s weight \(m g\). |
| 2 | \[f_k = \mu_k N = \mu_k m g\] | Kinetic friction magnitude is the product of coefficient \(\mu_k\) and normal force. |
| 3 | \[F_{\text{net}} = F_{\text{app}} – f_k\] | Net force equals applied force minus friction (opposite direction). |
| 4 | \[W_{\text{net}} = F_{\text{net}}\, \Delta x\] | Work by the net force over displacement \(\Delta x = 6\,\text{m}\). |
| 5 | \[W_{\text{net}} = \tfrac12 m v_x^2 – \tfrac12 m v_i^2\] | Work–energy theorem; the object starts from rest so \(v_i = 0\). |
| 6 | \[v_x = \sqrt{\frac{2 F_{\text{net}}\, \Delta x}{m}}\] | Solving the work–energy relation for the final speed. |
| 7 | \[v_x = \sqrt{\frac{2 (110\,\text{N} – 0.25\, (12\,\text{kg})(9.8\,\text{m/s}^2)) (6\,\text{m})}{12\,\text{kg}}} \;\approx\; 9.0\,\text{m/s}\] | Numeric substitution gives the speed at the base of the incline. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[KE_{\text{base}} = \tfrac12 m v_x^2\] | Kinetic energy as the object reaches the incline. |
| 2 | \[\Delta PE = m g (\Delta x \sin \theta)\] | Gravitational potential gain on an incline: height is \(\Delta x \sin \theta\). |
| 3 | \[W_{f} = -\mu_k m g \cos \theta \; \Delta x\] | Work done by kinetic friction along the incline (opposite motion). |
| 4 | \[KE_{\text{base}} = \Delta PE + |W_{f}|\] | All initial kinetic energy is dissipated by gravity and friction until rest. |
| 5 | \[\tfrac12 m v_x^2 = m g (\sin \theta + \mu_k \cos \theta) \, \Delta x\] | Combine energy losses (gravity + friction) into a single factor. |
| 6 | \[\Delta x = \frac{\tfrac12 m v_x^2}{m g (\sin \theta + \mu_k \cos \theta)}\] | Algebraic isolation of the distance up the incline. |
| 7 | \[\Delta x = \frac{\tfrac12 (12)(9.0^2)}{(12)(9.8)(\sin 17^\circ + 0.45 \cos 17^\circ)} \;\approx\; \boxed{5.7\,\text{m}}\] | Substituting numbers (\(\sin 17^\circ \approx 0.292\), \(\cos 17^\circ \approx 0.956\)) yields the sliding distance. |
Just ask: "Help me solve this problem."
A \( 0.30 \text{-kg} \) mass is suspended on a spring. In equilibrium the mass stretches the spring \( 2.0 \) \( \text{cm} \) downward. The mass is then pulled an additional distance of \( 1.0 \) \( \text{cm} \) down and released from rest. Write down its equation of motion.
Find the escape speed from a planet of mass \(6.89 \times 10^{25} \, \text{kg}\) and radius \(6.2 \times 10^{6} \, \text{m}\).

An object of mass \( m = 3.0 \) \( \text{kg} \) is attached to one end of a string with negligible mass and length \( L = 0.80 \) \( \text{m} \). The object is released from rest at time \( t = 0 \), when the string is horizontal. At time \( t = t_1 \) the object is at the location shown in the figure, where the string is vertical. Which of the following is most nearly the magnitude of the tension in the string at time \( t = t_1 \)?
An average adult elephant \( (5000 \, \text{kg}) \) is strapped to a spring, which is then pulled \( 2 \, \text{meters} \) away from its equilibrium position and released. The elephant starts oscillating back and forth with a period of \( 10 \) seconds.
A spring with a spring constant of \( 50. \) \( \text{N/m} \) is hanging from a stand. A second spring with a spring constant of \( 100. \) \( \text{N/m} \) is hanging from the first spring. How far do they stretch if a \( 0.50 \) \( \text{kg} \) mass is hung from the bottom spring?
\(5.7\,\text{m}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?