0 attempts
0% avg
UBQ Credits
# (a) Direction of the resultant force acting on the marble at point C
The resultant force acting on the marble at point C is directed towards the center of the loop. This force is mainly comprised of the gravitational force pulling downwards and the normal force exerted by the track which also points towards the center of the loop during the circular motion.
# (b) Names of all the forces acting on the marble at point C
Force | Description |
---|---|
Gravitational Force | The force due to gravity acting downwards towards the center of the earth. |
Normal Force | The force exerted by the surface of the loop on the marble directed radially inward, toward the center of the loop. |
# (c) Deduce the speed of the marble at point C. The working below uses two seperate conservation of energy equations. However, it can also be done in a single equation such that the postential energy at A transfroms into the potential energy at C and the kinetic energy at C. This is written as [katex] mgh_A = mgh_C + \frac{1}{2}mv^2 [/katex].
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] h_A = 0.8 \, \text{m} [/katex] | Initial height from which the marble is released. |
2 | [katex] v_A = 0 \, \text{m/s} [/katex] | Initial velocity (marble is released from rest). |
3 | [katex] v_B = \sqrt{2gh_A} [/katex] | Re-arrange and solve for velocity at the bottom of the incline, using conservation of mechanical energy, where [katex] mgh_A = \frac{1}{2}m{v^2}_B [/katex]. |
4 | [katex] v_B = \sqrt{2 \times 9.8 \times 0.8} [/katex] | Calculating [katex] v_B [/katex]. |
5 | [katex] v_B \approx 3.97 \, \text{m/s} [/katex] | Approximate calculation of velocity at point B. |
6 | [katex] h_C = 0.35 \, \text{m} [/katex] | The maximum height attained by the marble is at point C (top of loop). |
7 | [katex] v_C^2 = v_B^2 – 2gh_C [/katex] | Using conservation of mechanical energy between points B and C. |
8 | [katex] v_C^2 = 3.97^2 – 2 \times 9.8 \times 0.35 [/katex] | Calculating [katex] v_C [/katex] from [katex] v_B [/katex] and change in gravitational potential energy. |
9 | [katex] v_C \approx 3.0 \, \text{m/s} [/katex] | Approximate calculation of velocity at point C. |
# (d) Effect if the release height of the marble were to double
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( mgh_A = mgh_C + \frac{1}{2}mv^2 \) | The conservation of energy between points A and C, as used in part B. |
2 | \( gh_A = gh_C + \frac{1}{2}v^2 \) | Simplified formula, canceling out \( m \) on both sides. |
3 | \( g\Delta h = \frac{1}{2}v^2 \) | Replace \( gh_A – gh_C \) with \( g\Delta h \), which represents the change in height. |
4 | \( \frac{\Delta h}{v^2} = \frac{1}{2g} \) | Isolate \( \Delta h \) and \( v^2 \) to see their proportional relationship. |
5 | Proportional analysis | In the initial setup: \( \Delta h = 0.8 – 0.35 = 0.45 \, \text{m} \). Doubling the release height, \( \Delta h \) becomes \( 1.6 – 0.35 = 1.25 \, \text{m} \). The ratio of \( \Delta h \) is: \[ \frac{1.25}{0.45} \approx 2.78 \] Since \( v^2 \propto \Delta h \), the velocity increases by \( \sqrt{2.78} \approx 1.67 \). |
6 | Conclusion | The original velocity was \( 3 \, \text{m/s} \). With a velocity ratio of \( 1.67 \), the final velocity becomes: \[ 3 \times 1.67 \approx 5 \, \text{m/s} \] |
Just ask: "Help me solve this problem."
A conical pendulum is formed by attaching a ball of mass \( m \) to a string of length \( \ell \), then allowing the ball to move in a horizontal circle of radius \( r \). The following figure shows that the string traces out the surface of a cone, hence the name.
A skier with a mass of 58 kg glides up a snowy incline that forms an angle of 28 degrees with the horizontal. The skier initially moves at a speed of 7.2 m/s. After traveling a distance of 2.3 meters up the slope, the skier’s speed reduces to 3.8 m/s.
Refer to the diagram above and solve all equations in-terms of R, M, k, and constants.
A discus is held at the end of an arm that starts at rest. The average angular acceleration of [katex]54 \, \text{rad/s}^2 [/katex] lasts for 0.25 s. The path is circular and has radius 1.1 m.
Note: A discuss is a heavy, flattened circular object for throwing.
A race car traveling at a constant speed of \( 50 \) \( \text{m/s} \) drives around a circular track that is \( 500 \) \( \text{m} \) in diameter. What is the magnitude of the acceleration of the car?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.