0 attempts
0% avg
UBQ Credits
| Derivation/Formula | Reasoning |
|---|---|
| \[m_w v_{x,w} + m_s v_{x,s} = 0\] | Conservation of horizontal momentum; external horizontal forces are negligible during the push. |
| \[v_{x,s} = -\frac{m_w}{m_s} v_{x,w}\] | Algebraically solve for the son’s final velocity \(v_{x,s}\). |
| \[v_{x,s} = -\frac{70}{35}(0.55)\] | Substitute \(m_w = 70\,\text{kg}\), \(m_s = 35\,\text{kg}\), and \(v_{x,w} = 0.55\,\text{m/s}\). |
| \[\boxed{v_{x,s} = -1.1\,\text{m/s}}\] | The negative sign indicates motion opposite to the woman; speed is \(1.1\,\text{m/s}\). |
| Derivation/Formula | Reasoning |
|---|---|
| \[J = m_s (v_{x,s} – v_i)\] | Impulse–momentum theorem with \(v_i = 0\). |
| \[J = 35(-1.1 – 0)\] | Insert values for the son. |
| \[|J| = 38.5\,\text{Ns}\] | Magnitude of impulse. |
| \[F_{\text{avg}} = \frac{|J|}{\Delta t}\] | Average force equals impulse divided by the interaction time \(\Delta t\). |
| \[F_{\text{avg}} = \frac{38.5}{0.60} = 64\,\text{N}\] | Compute using \(\Delta t = 0.60\,\text{s}\). |
| \[\boxed{F_{\text{avg}} = 64\,\text{N}}\] | Magnitude of the force the mother exerts on the son. |
| Derivation/Formula | Reasoning |
|---|---|
| \[F_{s \rightarrow w} = -F_{w \rightarrow s}\] | Newton’s third law: forces between two bodies are equal in magnitude and opposite in direction. |
| \[\boxed{|F_{s \rightarrow w}| = |F_{w \rightarrow s}| = 64\,\text{N}}\] | The mother experiences a \(64\,\text{N}\) force directed opposite to the force on the son. |
| Derivation/Formula | Reasoning |
|---|---|
| \[a = \mu_k g\] | Kinetic-friction force \(\mu_k m g\) divided by mass gives a deceleration independent of mass. |
| \[\Delta x = \frac{v_i^2}{2a}\] | Stopping distance for constant deceleration. |
| \[\frac{\Delta x_s}{\Delta x_w} = \left(\frac{v_{x,s}}{v_{x,w}}\right)^2\] | Because both skaters have the same \(a = \mu_k g\), we can set the ratio of distances equal to the ratio of velocities (proportional analysis using the equation in step two). |
| \[\frac{\Delta x_s}{\Delta x_w} = \left(\frac{1.1}{0.55}\right)^2 = 4\] | Insert their initial speeds. The son’s stopping distance is \(4\) times greater than his mother’s stopping distance. |
| \[\boxed{\Delta x_s = 4(7.0) = 28\,\text{m}}\] | Multiply the woman’s \(7.0\,\text{m}\) by the ratio to find the son’s stopping distance. |
Just ask: "Help me solve this problem."
A 3800 kg open railroad car coasts along with a constant speed of 8.60 m/s along a level track. Snow begins to fall vertically and fills the car at rate of 3.50 kg/min. Ignoring friction with the tracks, what is the speed of the car after 90 min?
Two students hold a large bed sheet vertically between them. A third student, who happens to be the star pitcher on the school baseball team, throws a raw egg at the center of the sheet. Explain why the egg does not break when it hits the sheet, regardless of its initial speed.
A \(15 \, \text{g}\) marble moves to the right at \(3.5 \, \text{m/s}\) and makes an elastic head-on collision with a \(22 \, \text{g}\) marble. The final velocity of the \(22 \, \text{g}\) marble is \(2.0 \, \text{m/s}\) to the right, and the final velocity of the \(15 \, \text{g}\) marble is \(5.4 \, \text{m/s}\) to the left. What was the initial velocity of the \(22 \, \text{g}\) marble?
A 0.035 kg bullet moving horizontally at 350 m/s embeds itself into an initially stationary 0.55 kg block. Air resistance is negligible.
A \(1200 \, \text{kg}\) car moving at \(15.6 \, \text{m/s}\) suddenly collides with a stationary car of mass \(1500 \, \text{kg}\). If the two vehicles lock together, what is their combined velocity immediately after the collision?
\(1.1\,\text{m/s}\)
\(64\,\text{N}\)
\(\text{equal magnitude, opposite direction}\)
\(28\,\text{m}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?