0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \omega = 100,000 \, \text{rpm} \) | Given the angular velocity of the flywheel. |
2 | \( \omega = 100,000 \times \frac{2\pi \, \text{rad} }{1 \, \text{rev}} \times \frac{1 \, \text{min} }{60 \, \text{s} } \) | Convert from revolutions per minute (rpm) to radians per second (rad/s). |
3 | \( \omega = \frac{100,000 \times 2\pi}{60} \, \text{rad/s} \) | Combine the conversion factors. |
4 | \( \omega \approx 10472 \, \text{rad/s} \) | Simplify the expression to get the angular velocity in rad/s. |
5 | \( r = \frac{20 \, \text{cm}}{2} = 10 \, \text{cm} = 0.1 \, \text{m} \) | Calculate the radius of the flywheel and convert to meters. |
6 | \( v = \omega r \) | Use the formula for linear speed on the rim of a rotating object: \( v = \omega r \). |
7 | \( v = 10472 \, \text{rad/s} \times 0.1 \, \text{m} \) | Substitute the values for \( \omega \) and \( r \) into the formula. |
8 | \( v \approx 1047.2 \, \text{m/s} \) | Calculate the linear speed: the speed of a point on the rim of the flywheel is \( \boxed{1047.2 \, \text{m/s}} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \omega_i = 10472 \, \text{rad/s} \) | Initial angular velocity from part (a). |
2 | \( \omega_f = 0.6 \times 10472 \, \text{rad/s} \) | Angular velocity decreases by 40%, so the final angular velocity is 60% of the initial value. |
3 | \( \omega_f = 0.6 \times 10472 \, \text{rad/s} = 6283.2 \, \text{rad/s} \) | Calculate the final angular velocity. |
4 | \( \alpha = \frac{\Delta \omega}{\Delta t} \) | The formula for angular acceleration where \( \Delta \omega = \omega_f – \omega_i \) and \( \Delta t \) is the time interval. |
5 | \( \alpha = \frac{6283.2 \, \text{rad/s} – 10472 \, \text{rad/s}}{30 \, \text{s}} \) | Substitute the known values into the formula. |
6 | \( \alpha = \frac{-4188.8 \, \text{rad/s}}{30 \, \text{s}} \) | Simplify the numerator. |
7 | \( \alpha \approx -139.6 \, \text{rad/s}^2 \) | Calculate the angular acceleration, which is . The magnitude is \( \boxed{139.6 \, \text{rad/s}^2} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \theta = \omega_i t + \frac{1}{2} \alpha t^2 \) | Use the kinematic equation for angular displacement under constant angular acceleration. |
2 | \( \theta = 10472 \, \text{rad/s} \times 30 \, \text{s} + \frac{1}{2} \times (-139.6 \, \text{rad/s}^2) \times (30 \, \text{s})^2 \) | Substitute the known values into the formula. |
3 | \( \theta = 10472 \times 30 + \frac{1}{2} \times (-139.6) \times 900 \) | Simplify the expression. |
4 | \( \theta = 314160 – 62820 \) | Calculate the individual terms. |
5 | \( \theta = 251340 \, \text{rad} \) | Combine the results to get the total angular displacement in radians. |
6 | \( \text{Revolutions} = \frac{\theta}{2\pi} \) | Convert angular displacement from radians to revolutions. |
7 | \( \text{Revolutions} = \frac{251340}{2\pi} \) | Substitute the value of \( \theta \). |
8 | \( \text{Revolutions} \approx 40000 \) | Calculate the total number of revolutions. The rotor makes approximately \( \boxed{40000 \, \text{revolutions}} \) during these 30 seconds. |
Just ask: "Help me solve this problem."
An isolated spherical star of radius [katex] R_o [/katex], rotates about an axis that passes through its center with an angular velocity of [katex] \omega_o [/katex]. Gravitational forces within the star cause the star’s radius to collapse and decrease to a value [katex] r_o <R_o [/katex], but the mass of the star remains constant. A graph of the star’s angular velocity as a function of time as it collapses is shown. Which of the following predictions is correct about the angular momentum [katex] L [/katex] of the star immediately after the collapse?
The elliptical orbit of a comet is shown above. Positions 1 and 2 are, respectively, the farthest and nearest positions to the Sun, and at position 1 the distance from the comet to the Sun is 10 times that at position 2. At position 2, the comet’s kinetic energy is
When is the angular momentum of a system constant?
How long does it take for a rotating object to speed up from 15.0 rad/s to 33.3 rad/s if it has a uniform angular acceleration of 3.45 rad/s2?
A friend is balancing a fork on one finger. Which of the following are correct explanations of how he accomplishes this? Select two answers.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.