0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \omega = 100,000 \, \text{rpm} \) | Given the angular velocity of the flywheel. |
2 | \( \omega = 100,000 \times \frac{2\pi \, \text{rad} }{1 \, \text{rev}} \times \frac{1 \, \text{min} }{60 \, \text{s} } \) | Convert from revolutions per minute (rpm) to radians per second (rad/s). |
3 | \( \omega = \frac{100,000 \times 2\pi}{60} \, \text{rad/s} \) | Combine the conversion factors. |
4 | \( \omega \approx 10472 \, \text{rad/s} \) | Simplify the expression to get the angular velocity in rad/s. |
5 | \( r = \frac{20 \, \text{cm}}{2} = 10 \, \text{cm} = 0.1 \, \text{m} \) | Calculate the radius of the flywheel and convert to meters. |
6 | \( v = \omega r \) | Use the formula for linear speed on the rim of a rotating object: \( v = \omega r \). |
7 | \( v = 10472 \, \text{rad/s} \times 0.1 \, \text{m} \) | Substitute the values for \( \omega \) and \( r \) into the formula. |
8 | \( v \approx 1047.2 \, \text{m/s} \) | Calculate the linear speed: the speed of a point on the rim of the flywheel is \( \boxed{1047.2 \, \text{m/s}} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \omega_i = 10472 \, \text{rad/s} \) | Initial angular velocity from part (a). |
2 | \( \omega_f = 0.6 \times 10472 \, \text{rad/s} \) | Angular velocity decreases by 40%, so the final angular velocity is 60% of the initial value. |
3 | \( \omega_f = 0.6 \times 10472 \, \text{rad/s} = 6283.2 \, \text{rad/s} \) | Calculate the final angular velocity. |
4 | \( \alpha = \frac{\Delta \omega}{\Delta t} \) | The formula for angular acceleration where \( \Delta \omega = \omega_f – \omega_i \) and \( \Delta t \) is the time interval. |
5 | \( \alpha = \frac{6283.2 \, \text{rad/s} – 10472 \, \text{rad/s}}{30 \, \text{s}} \) | Substitute the known values into the formula. |
6 | \( \alpha = \frac{-4188.8 \, \text{rad/s}}{30 \, \text{s}} \) | Simplify the numerator. |
7 | \( \alpha \approx -139.6 \, \text{rad/s}^2 \) | Calculate the angular acceleration, which is . The magnitude is \( \boxed{139.6 \, \text{rad/s}^2} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \theta = \omega_i t + \frac{1}{2} \alpha t^2 \) | Use the kinematic equation for angular displacement under constant angular acceleration. |
2 | \( \theta = 10472 \, \text{rad/s} \times 30 \, \text{s} + \frac{1}{2} \times (-139.6 \, \text{rad/s}^2) \times (30 \, \text{s})^2 \) | Substitute the known values into the formula. |
3 | \( \theta = 10472 \times 30 + \frac{1}{2} \times (-139.6) \times 900 \) | Simplify the expression. |
4 | \( \theta = 314160 – 62820 \) | Calculate the individual terms. |
5 | \( \theta = 251340 \, \text{rad} \) | Combine the results to get the total angular displacement in radians. |
6 | \( \text{Revolutions} = \frac{\theta}{2\pi} \) | Convert angular displacement from radians to revolutions. |
7 | \( \text{Revolutions} = \frac{251340}{2\pi} \) | Substitute the value of \( \theta \). |
8 | \( \text{Revolutions} \approx 40000 \) | Calculate the total number of revolutions. The rotor makes approximately \( \boxed{40000 \, \text{revolutions}} \) during these 30 seconds. |
Just ask: "Help me solve this problem."
A uniform stick has length \( L \). The moment of inertia about the center of the stick is \( I_0 \). A particle of mass \( M \) is attached to one end of the stick. The moment of inertia of the combined system about the center of the stick is
A system consists of two small disks, of masses \( m \) and \( 2m \), attached to a rod of negligible mass of length \( 3l \) as shown above. The rod is free to turn about a vertical axis through point \( P \). The two disks rest on a rough horizontal surface; the coefficient of friction between the disks and the surface is \( \mu \). At time \( t = 0 \), the rod has an initial counterclockwise angular velocity \( \omega_0 \) about \( P \). The system is gradually brought to rest by friction. Develop expressions for the following quantities in terms of \( \mu \), \( m \), \( l \), \( g \), and \( \omega_0 \).
A hungry bear weighing 700 N walks out on a beam in an attempt to retrieve a basket of goodies hanging at the end of the beam. The beam is uniform, weighs 200 N, and is 6.00 m long. The goodies weigh 80 N.
A solid sphere ([katex] I = \frac{2}{5}MR^2[/katex]) and a solid cylinder ([katex] I = \frac{1}{2}MR^2[/katex]), both uniform and of the same mass and radius, roll without slipping at the same forward speed. It is correct to say that the total kinetic energy of the solid sphere is
Two forces produce equal torques on a door about the door hinge. The first force is applied at the midpoint of the door; the second force is applied at the doorknob. Both forces are applied perpendicular to the door. Which force has a greater magnitude?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.