0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| (a) Accelerarion of the particle when its displacement is 6 m | ||
| 1 | \[F = ma\] | Newton’s second law relates force \( F \), mass \( m \), and acceleration \( a \). |
| 2 | \[a = \frac{F}{m}\] | Rearrange the formula to solve for acceleration. |
| 3 | \[a = \frac{4\, \text{N}}{0.20\, \text{kg}}\] | Substitute the force from the graph (4 N) and the mass (0.20 kg). |
| 4 | \[a = 20\, \text{m/s}^2\] | Calculate the acceleration. |
| (b) Time taken for the object to be displaced the first 12 m | ||
| 1 | \[\Delta x = v_i t + \frac{1}{2} a t^2\] | Using the kinematic equation with initial velocity \( v_i = 0 \). |
| 2 | \[12 = \frac{1}{2} \cdot 20 \cdot t^2\] | Substitute \( \Delta x = 12 \) m and \( a = 20 \text{ m/s}^2 \). |
| 3 | \[12 = 10 t^2\] | Simplify the equation. |
| 4 | \[t^2 = 1.2\] | Divide both sides by 10. |
| 5 | \[t = \sqrt{1.2}\] | Solve for \( t \). |
| 6 | \[t \approx 1.095\, \text{s}\] | Calculate the time taken. |
| (c) The amount of work done by the net force in displacing the object the first 12 m | ||
| 1 | \[W = F \Delta x\] | Work done \( W \) is the product of force and displacement. |
| 2 | \[W = 4 \times 12\] | Substitute \( F = 4 \text{ N} \) and \( \Delta x = 12 \text{ m} \). |
| 3 | \[W = 48 \text{ J}\] | Calculate the work done. |
| (d) The speed of the object at displacement \( x = 12 \text{ m} \) | ||
| 1 | \[v_x^2 = v_i^2 + 2a \Delta x\] | Use the kinematic equation with initial velocity \( v_i = 0 \). |
| 2 | \[v_x^2 = 0 + 2 \cdot 20 \cdot 12\] | Substitute \( a = 20 \text{ m/s}^2 \) and \( \Delta x = 12 \text{ m} \). |
| 3 | \[v_x^2 = 480\] | Calculate \( v_x^2 \). |
| 4 | \[v_x = \sqrt{480}\] | Solve for \( v_x \). |
| 5 | \[v_x \approx 21.9 \, \text{m/s}\] | Calculate the velocity. |
| (e) The final speed of the object at displacement \( x = 20 \text{ m} \) | ||
| 1 | \[W_{total} = W_{1} + W_{2}\] | Calculate total work done by summing areas under the \( F \) vs. \( x \) graph. |
| 2 | \[W_{1} = F_{1} \times \Delta x_{1} = 4 \times 12 = 48 \, \text{J}\] | The work done on the first section (rectangle 0 to 12 m). |
| 3 | \[W_{2} = \frac{1}{2} \cdot 4 \cdot 8 = 16 \, \text{J}\] | The work done on the second section (triangular area from 12 m to 20 m). |
| 4 | \[W_{total} = 48 + 16 = 64 \, \text{J}\] | Total work done. |
| 5 | \[\text{K.E.} = \frac{1}{2}m v_x^2\] | Relate total work done to kinetic energy gain. |
| 6 | \[64 = \frac{1}{2} \cdot 0.20 \cdot v_x^2\] | Substitute \( m = 0.20 \, \text{kg} \). |
| 7 | \[v_x^2 = 640\] | Solve for \( v_x^2 \). |
| 8 | \[v_x = \sqrt{640}\] | Solve for \( v_x \). |
| 9 | \[\boxed{v_x \approx 25.3 \, \text{m/s}}\] | Calculate the final speed at \( x = 20 \text{ m} \). |
Just ask: "Help me solve this problem."

Two masses, \( m_1 \) and \( m_2 \), are connected by a cord and arranged as shown in the diagram, with \( m_1 \) sliding along a frictionless surface and \( m_2 \) hanging from a light, frictionless pulley. What would be the mass of the falling mass, \( m_2 \), if both the sliding mass, \( m_1 \), and the tension, \( T \), in the cord were known?
Find the net gravitational force on a \(2.0 \, \text{kg}\) sphere midway between a \(4.0 \, \text{kg}\) sphere and a \(7.0 \, \text{kg}\) sphere that are \(1.2 \, \text{m}\) apart.

Two blocks, A and B, are connected by a light string that passes over a frictionless pulley. Block A, of mass \( 10 \) \( \text{kg} \), rests on a rough plane that makes an angle of \( 45^{\circ} \) with the horizontal, while block B, of mass \( 17 \) \( \text{kg} \), hangs vertically. Starting from rest, what is the minimum coefficient of static friction between block A and the plane required to keep the system in static equilibrium?
Three blocks are stacked on top of one another. The top block has a mass of \( 4.6 \, \text{kg} \), the middle one has a mass of \( 1.2 \, \text{kg} \), and the bottom one has a mass of \( 3.7 \, \text{kg} \).
Identify and calculate any normal forces between the objects.
A pendulum consists of a mass \( M \) hanging at the bottom end of a massless rod of length \( \ell \) which has a frictionless pivot at its top end. A mass \( m \), moving with velocity \( v \), impacts \( M \) and becomes embedded. In terms of the given variables and constants, what is the smallest value of \( v \) sufficient to cause the pendulum (with embedded mass \( m \)) to swing clear over the top of its arc?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?