0 attempts
0% avg
UBQ Credits
(a) Calculate the maximum speed of the car at point \( P \).
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ PE_A = mgh_A \] | Calculate the potential energy at point \( A \) where \( h_A = 90 \, \text{m} \). |
2 | \[ KE_P = \frac{1}{2}mv_{\text{max}}^2 \] | Calculate the kinetic energy at point \( P \). The speed is at maximum here, so \(\Delta h = 0\). |
3 | \[ PE_A = KE_P \] | Use the conservation of energy: all potential energy at \( A \) converts into kinetic energy at \( P \). |
4 | \[ mgh_A = \frac{1}{2}mv_{\text{max}}^2 \] | Set the potential energy equal to the kinetic energy. The mass \( m \) cancels out. |
5 | \[ v_{\text{max}} = \sqrt{2gh_A} \] | Solve for \( v_{\text{max}} \) by rearranging and simplifying the equation. |
6 | \[ v_{\text{max}} = \sqrt{2 \times 9.8 \times 90} \] | Substitute \( g = 9.8 \, \text{m/s}^2 \) and \( h_A = 90 \, \text{m} \) into the equation. |
7 | \[\boxed{v_{\text{max}} = 42 \, \text{m/s}}\] | Calculate the final value of the maximum velocity \( v_{\text{max}} \). |
(b) Calculate the speed \( v_B \) at the top of the loop.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ PE_B = mgh_B \] | Calculate the potential energy at point \( B \) where \( h_B = 50 \, \text{m} \). |
2 | \[ KE_B = \frac{1}{2}mv_B^2 \] | Calculate the kinetic energy at point \( B \). |
3 | \[ PE_A = PE_B + KE_B \] | Apply conservation of energy between points \( A \) and \( B \). |
4 | \[ mgh_A = mgh_B + \frac{1}{2}mv_B^2 \] | Set the potential and kinetic energy sum at \( B \) equal to the potential energy at \( A \). Mass \( m \) cancels out. |
5 | \[ gh_A = gh_B + \frac{1}{2}v_B^2 \] | Mass cancels out; simplify the equation for \( v_B \). |
6 | \[ v_B^2 = 2g(h_A – h_B) \] | Rearrange to solve for the speed \( v_B \). |
7 | \[ v_B = \sqrt{2 \times 9.8 \times (90 – 50)} \] | Substitute values \( g = 9.8 \, \text{m/s}^2 \), \( h_A = 90 \, \text{m} \), and \( h_B = 50 \, \text{m} \) into the equation. |
8 | \[\boxed{v_B = 28 \, \text{m/s}}\] | Calculate the speed \( v_B \) at the top of the loop. |
Forces at Point B:
– Normal Force (\( F_N \)): Points towards the center of the loop.
– Gravitational Force (\( F_g \)): Points downwards (also towards the center when car is at the top of the loop).
(c) Calculate the magnitude of all forces and explain loop modification.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ F_N + F_g = \frac{mv_B^2}{r} \] | The centripetal force required at point \( B \). Both forces point towards the center. |
2 | \[ F_g = mg \] | Substitute gravitational force where \( m = 700 \, \text{kg} \) and \( g = 9.8 \, \text{m/s}^2 \). |
3 | \[ F_N + mg = \frac{mv_B^2}{r} \] | Substitute the gravitational force into the centripetal force equation. |
4 | \[ F_N = \frac{mv_B^2}{r} – mg \] | Rearrange to solve for the normal force \( F_N \). |
5 | \[ F_N = \frac{700 \times 28^2}{20} – 700 \times 9.8 \] | Substitute known values: \( m = 700 \, \text{kg} \), \( v_B = 28 \, \text{m/s} \), \( r = 20 \, \text{m} \). |
6 | \[\boxed{F_N = 20580 \, \text{N}}\] | Calculate the normal force at the top of the loop. |
Loop Modification:
If the loop’s shape or radius is modified, the drop height should be adjusted accordingly to ensure energy conservation and keep \( v_B \) unchanged. This is supported by the equation derived in part B: \(v_B = \sqrt{2g (h_A – h_B)}\) which shows that \( v_B \) depends only on the height difference of the rollercoaster.
Just ask: "Help me solve this problem."
A girl throws a stone from a bridge. Consider the following ways she might throw the stone. The speed of the stone as it leaves her hand is the same in each case.
Case A: Thrown straight up.
Case B: Thrown straight down.
Case C: Thrown out at an angle of 45° above horizontal.
Case D: Thrown straight out horizontally.
In which case will the speed of the stone be greatest when it hits the water below if there is no significant air resistance, assuming equal initial speeds?
A conical pendulum is formed by attaching a ball of mass \( m \) to a string of length \( \ell \), then allowing the ball to move in a horizontal circle of radius \( r \). The following figure shows that the string traces out the surface of a cone, hence the name.
A person is making homemade ice cream. She exerts a force of magnitude 23 N on the free end of the crank handle on the ice-cream maker, and this end moves on a circular path of radius 0.25 m. The force is always applied parallel to the motion of the handle. If the handle is turned once every 1.7 s, what is the average power being expended?
A force F is exerted by a broom handle on the head of a broom, which has a mass m. The handle is at an angle θ to the horizontal. The work done by the force on the head of the broom as it moves a distance d across a horizontal floor is:
On a frictionless horizontal air table, puck A (with mass \( 0.249 \) \( \text{kg} \)) is moving toward puck B (with mass \( 0.375 \) \( \text{kg} \)), which is initially at rest. After the collision, puck A has velocity \( 0.115 \) \( \text{m/s} \) to the left, and puck B has velocity \( 0.645 \) \( \text{m/s} \) to the right.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.