0 attempts
0% avg
UBQ Credits
Part (a)
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\Delta x = 12 \, \text{cm} = 0.12 \, \text{m}[/katex] | Convert the distance from centimeters to meters. |
2 | [katex]v_i = 500 \, \text{m/s}, \, v_x = 0 \, \text{m/s}[/katex] | Identify the initial and final velocities. |
3 | [katex]a = \frac{v_x^2 – v_i^2}{2\Delta x}[/katex] | Use the kinematic equation to find the acceleration. |
4 | [katex]a = \frac{0 – (500 \, \text{m/s})^2}{2 \times 0.12 \, \text{m}}[/katex] | Substitute the values into the kinematic equation. |
5 | [katex]a = \frac{-250000}{0.24} \approx -1041666.67 \, \text{m/s}^2[/katex] | Calculate the deceleration of the bullet. (Negative sign indicates deceleration) |
6 | [katex]F = ma[/katex] | Use Newton’s second law to find the force. |
7 | [katex]m = 0.03 \, \text{kg}, \, F = 0.03 \times (-1041666.67)[/katex] | Substitute the values (mass in kg and acceleration) into the formula. |
8 | [katex]\boxed{F \approx -31250 \, \text{N}}[/katex] | The force on the bullet is approximately -31250 N (Negative sign indicates the direction of the force opposite to the motion). |
Part (b)
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v_i = 500 \, \text{m/s}, \, v_x = 0 \, \text{m/s}, \, a = -1041666.67 \, \text{m/s}^2[/katex] | Identify the initial and final velocities and the deceleration. |
2 | [katex]v_x = v_i + at[/katex] | Use the kinematic equation to find the time. |
3 | [katex]0 = 500 + (-1041666.67)t[/katex] | Substitute the values into the kinematic equation. |
4 | [katex]t = \frac{500}{1041666.67} \approx 0.00048 \, \text{s}[/katex] | Solve for the time [katex]t[/katex]. |
5 | [katex]\boxed{t \approx 0.00048 \, \text{s}}[/katex] | The time required for the bullet to stop is approximately 0.00048 seconds. |
Just ask: "Help me solve this problem."
List at least 2 everyday forces that are not conservative, and explain why they aren’t.
A student is watching their hockey puck slide up and down an incline. They give the puck a quick push along a frictionless table, and it slides up a \( 30^\circ \) rough incline (\( \mu_k = 0.4 \)) of distance \( d \), with an initial speed of \( 5 \) \( \text{m/s} \), and then it slides back down.
Toy car W travels across a horizontal surface with an acceleration of \( a_w \) after starting from rest. Toy car Z travels across the same surface toward car W with an acceleration of \( a_z \), after starting from rest. Car W is separated from car Z by a distance \( d \). Which of the following pairs of equations could be used to determine the location on the horizontal surface where the two cars will meet, and why?
A boat is rowed directly upriver at a speed of \(2.5 \, \text{m/s}\) relative to the water. Viewers on the shore find that it is moving at only \(0.5 \, \text{m/s}\) relative to the shore. What is the speed of the river? Is it moving with or against the boat?
The figure shows a truck pulling three crates across a rough road. Which of the following best describes the directions of all the horizontal forces acting on crate 2?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.